Stormwater Report to Support Rezoning Application

285-305 Pacific Highway, Lake Munmorah

Prepared for EDH Architects

Our Ref: 18158_v1.0

7th February 2019

CUBO CONSULTING PTY LTD - ABN 46 610 277 462 Suite 6, 220 The Entrance Rd Erina - PO BOX 315 AVOCA BEACH NSW 2251 Email: <u>admin@cubo.net.au</u> Web: <u>www.cubo.net.au</u> **Phone: 02 4326 0990**

Document Information

Prepared forEDH ArchitectsProject NameStormwater Report to Support Rezoning ApplicationJob Reference18158_v1.0Date7 February 2019

Contact Information

Cubo Consulting Pty Ltd ABN 46 610 277 462

Suite 6 220 The Entrance Road Erina NSW 2250

Telephone: 02 4326 0990

Document Control						
Author Reviewer						
Version	Date	Name	Initials	Name	Initials	
1.0	07/02/19	Matthew Brown	MB	Vince Cubis	VC	

Table of Contents

1	Executive Summary	4
2	Background Information	6
3	Existing Site	
4	Proposed Rezoning	
5	Stormwater Management	
5.1	Constraints and Opportunities	8
5.2	Water Conservation Target	9
5.3	Water Retention Target	9
5.4	Stormwater Detention	9
5.5	Stormwater Quality	11
5.6	Flooding Assessment	13
5.7	Downstream Wetland Management Area	17
6	References	
7	Appendices	
Α.	Cubo Drawings 18104-Cl	19
B.	DRAINS Model Set Up and Outputs	24
C.	MUSIC Model Set Up and Outputs	47
D.	HEC-RAS 1-D Model Outputs	53

1 Executive Summary

Cubo Consulting Pty Ltd has been engaged by EDH Architects to prepare a stormwater report to support the rezoning application for submission to Central Coast Council for the proposed residential subdivision and development at 285-305 Pacific Highway, Lake Munmorah. This report provides information on:

- Stormwater quantity and site discharge management;
- Stormwater quality and treatment options, including assessment of downstream wetlands; and
- Site overland flows and flooding.

This report also includes some preliminary information on stormwater retention and water conservation, which are typically required at the Development Application (DA) stage. Assumptions have been made in the preparation of this report, e.g. proposed development layout, that will need to be addressed before proceeding with detailed design.

The proposed rezoning site is located on RU6 Transitional Land on the northern side of the Pacific Highway to the west of the Lake Munmorah Shopping Centre. The proposal is to rezone the land to R2 Low Density Residential land to facilitate subdivision and residential development.

The report concludes that:

- 1. On-site detention will be required for the site to ensure post-development flows are maintained with predevelopment levels. A total OSD volume of approx. 7,000 m³, split into 2,500 m³ for the western catchment and 4,500 m³ for the eastern catchment, may ensure that post-development runoff is kept within pre-development levels.
- it is recommended that smaller upstream OSD's (part of the overall volume) are provided for the rezoning site to maintain base flows in the upper reaches of the creeks, particularly during smaller storm events.
- 3. Preliminary MUSIC modelling for the rezoning site indicates that Central Coast Council's pollutant reduction targets may be met through:
 - a. For the western catchment, bioretention ponds with a total filter area of 340 m² and upstream GPT(s). (if constructed wetlands are adopted the water quality area may increase to 3400 m².)
 - b. For the western catchment, bioretention ponds with a total filter area of 580 m² and upstream GPT(s). (if constructed wetlands are adopted the water quality area may increase by 5800 m².)
 - c. The MUSIC modelling assumes that all proposed lots within the development will have a minimum 2,000 L rainwater tank (as per BASIX requirements) with water reuse of 121 kL/year/lot.
- 4. The site is located within the upper reaches of the Karignan Creek catchment that drains into Lake Macquarie. Overland flows and flooding through the proposed rezoning site have been simulated in both 1D and 2D HEC-RAS models. Flood waters appear to be constrained to the existing natural channels running through the site. It is expected that:
 - a. For the western catchment, proposed development works are expected to be on the edge of the 100-year ARI flood extent and require only minimal filling to flood proof lots.
 - b. For the eastern catchment, some earthworks and lot filling may be required for flood proofing within the existing 100-year flood areas. Post-development modelling suggests that only localised increases to flow depth and velocity will occur as a result of the development, with no significant impacts to creek flows expected downstream of the proposed rezoning site.

- c. Within the proposed rezoning site, the maximum increase in PMF level compared to the 1% AEP is 360 mm, with an average increase of 76 mm. Therefore, the flood levels throughout the rezoning site should be based on the 1% AEP water levels plus 500 mm freeboard.
- d. Due to the steepness of the site, there appears to be limited backwater influence from the downstream wetlands and Lake Macquarie.
- 5. Detailed sediment and erosion control plans will be required to ensure that sediment is not transported to downstream wetlands during the construction phase. Erosion/scour protection measures, and revegetation, may be required at the discharge locations to the downstream channels within both the eastern and western catchments.

Based on the outcomes provided in this report, it is our view that appropriate stormwater measures can be put into place to adequately manage site stormwater post-development and that stormwater management will not preclude the rezoning of the site to allow residential development.

Supporting information is contained at the appendices to this report.

Yours Faithfully,

Prepared by Matthew Brown Drainage Engineer

.

Reviewed by Vince Cubis **Director**

Cupô

2 Background Information

This document presents the stormwater plan to support the rezoning application for submission to Central Coast Council for the proposed development at Lot 1 DP626787, Lot 438 DP755266, Lot 437 DP755266, 285-305 Pacific Highway Lake Munmorah NSW 2259.

3 Existing Site

The proposed rezoning site has an area of approximately 23 hectares and is made up of three separate blocks, each with existing dwellings. The land is currently zoned as RU6 Transitional Land. The land is generally clear, with sparse trees and a small forested area to the north-west. A natural drainage channel runs through the eastern half of the site, draining to a larger creek to the east, then north to Karignan Creek and Lake Macquarie. There is also a natural drainage channel that crosses the south-western corner of the site and runs along the western boundary, draining to Lake Macquarie.

The site is bound to the east by residential land; to the north by a reserve for public recreation and an environmental conservation area; to the west by commercial land, a reserve for public recreation and environmental conservation/management area; and to the south by the Pacific Highway.

Topography for the site and surrounding areas was generated using 1m LiDAR information taken from the Geoscience Australia website (ELVIS database). The site is located at the top of the Karignan Creek catchment that flows into Lake Macquarie, with the Pacific Highway being the (approximate) dividing ridgeline between the catchments of Lake Macquarie and Lake Munmorah.

The site is situated on a ridge that extends north from the Pacific Highway. The site generally falls towards Lake Macquarie to the north at moderate grades between 2 and 10%. The land also falls away to the north-east and north-west from the top of the ridge lines toward the natural water courses running through, and adjacent to, the site. Site topography is contained at **Appendix A**.

Based on aerial imagery and topographic information, and using the 'Strahler system', the natural watercourses have been assessed to be first order streams.

Preliminary feedback from NSW Department of Primary Industries (Water) (Algis Sutas), regarding the natural drainage channels through the site, advised:

"I wish to confirm our telephone discussion and my advice provided to you this afternoon as follows:

- I have reviewed the information provided by you as well as various aerial photo images of the site. I also have prior knowledge of the adjacent site to the west.
- In regard to the eastern blue line, I could not see any evidence of bed or bank along the course of the blue line. There is some dark green areas on the lower (northern most sections) sections, which may indicate some wet areas or flow paths.
- The site photos and air photos do not indicate any defined riparian corridor, aquatic vegetation or geomorphic features.
- I note that there has been an access track constructed for the telecommunications tower located in the south east corner of the property. There does not appear to be any evidence of flow or scour across this access track.
- Whilst there may have been some sort of flow path previously, the site has been highly
 modified by land clearing, construction of the dams and the altered drainage from the
 highway.
- Based on the above information, I am satisfied at this stage that it appears that the blue lines in the southern half of the site are probably not rivers as defined under the Water Management Act 2000. However, it is possible that the northern part of the site may contain remnant wetland or undefined flow paths..
- To assist in the rezoning and DA stages I suggest that you compile further evidence via contour survey, vegetation surveys, flood and stormwater investigations, etc.

- At this stage a site inspection would not be required.
- Further information regarding controlled activity approvals can be found at <u>https://www.industry.nsw.gov.au/water/licensing-trade/approvals/controlled-activities</u>.

Please contact me again if you wish to discuss any of the above issues, regards

Algis"

Soils and geological information were taken from the following sources:

- NSW Government Resources & Energy 1:100,000 Soil landscape mapping (Gosford-Lake Macquarie)
- NSW Government Department of Environment eSpade soil mapping (specific to the site)

These sources indicate that the site is located on Munmorah Conglomerate (Conglomerate, pebbly sandstone, grey to green shale) within the Doyalson group. Soils are expected to be clay and clay loams overlain by sand, moderately well drained and with moderate to high runoff.

Central Coast Council mapping indicates that the site is primarily a Class 5 (within 500 m of Class 1-4 soils) acid sulphate soil site, however there is a very small area in the north-eastern corner of the site that is classified Class 3 (works beyond 1 m below ground surface). This is likely to be outside the zone of any proposed development works.

Aerial photography of the existing site is presented in Figure 3-1 below.

Figure 3-1 Existing Site (Source - Sixmaps)

4 Proposed Rezoning

The site is proposed to be rezoned from RU6 Transition land to R2 Low density residential, to allow for future subdivision and land development.

5 Stormwater Management

Stormwater management for the proposed rezoning is required to comply with Central Coast Council documentation including:

- Wyong Development Control Plan 2013
 - Chapter 3.3 (Floodplain Management)
 - Chapter 3.10 (Wetlands Management)
 - Chapter 4 (Subdivision)
- Central Coast Council Civil Works Specification Design Guideline 2018

Generally, these stormwater management requirements are to:

- Include water retention and reuse measures to reduce potable water demand within the development.
- Provide concept stormwater design to:
 - Convey runoff from the site to downstream disposal locations, ensuring that there are no significant impacts to adjacent properties and downstream wetlands.
 - Incorporate on-site detention, as required, such that post-development runoff does not exceed pre-development runoff for all storm events from the 1-year ARI to the 100-year ARI.
 - Incorporate water sensitive urban design (WSUD) principles to provide a more integrated approach to urban water cycle management
 - Ensure that stormwater discharge from the site is managed in such a way to reduce pollutant loads to meet Central Coast Council pollutant reduction targets and assist in the protection of sensitive ecosystems and hydrological regimes of downstream environments.
- Assess 100-year flood extent across the site and provide measures to ensure that any developed land is flood free, whilst not significantly altering the hydrological characteristics and flood levels of natural drainage channels.

Erosion and sediment control procedures will need to be put into place during any construction activities on site to limit the risk of soil disturbance and erosion and potential transportation of sediments to downstream wetlands/drainage areas (see Section 5.7).

5.1 Constraints and Opportunities

Site opportunities include:

- Rainwater tanks will be required for the proposed development as part of BASIX requirements. This will assist in potable water reduction and provide on-site detention storage and stormwater treatment through temporary storage and reuse.
- The site slope is generally less than 5% which provides opportunities for a range of stormwater treatment options ranging from proprietary devices to constructed wetlands.

Site constraints include:

- The site is located immediately upstream of a Wetland Management Area as identified in DCP 2013 Section 3.10.

- Natural water courses run through the eastern half of the development and along the western boundary, which may subject the site to overland flows and flooding. Lot filling may be required to fully flood proof each lot.
- Based on Table 1 in the NSW Department of Industry *Guidelines for controlled activities on waterfront land* first order streams are required to have a 10 m vegetated riparian zone from the top of bank.

5.2 Water Conservation Target

In accordance with DCP 2013, Section 6.7.7.1.1 the target for potable water reduction is 40%.

Noting that the proposed development is currently only in the rezoning stage, it is recommended that the installation of the following WELS rated devices would allow for the 40% reduction in potable water to be met:

- 4-star dual-flush toilets
- 3-star showerheads
- 4-star taps (for all taps other than bath outlets and garden taps)
- Water efficient washing machines and dishwashers, wherever possible.

5.3 Water Retention Target

The minimum Stormwater Retention Volume (SRV) is calculated from the following formula.

SRV = $0.01A(0.02F)^2$ where: SRV = stormwater retention volume (m³)A = total site area (m²) - 232,000 m²F = fraction impervious (%)

As per DCP 2013, the developed site imperviousness based on residential lots between 450 m² and 700 m² is 80%. Due to the riparian zone set back requirements, it is our view that it is reasonable to reduce the impervious percentage to 70%. Thus, the required stormwater retention volume is:

Stormwater Retention Volume (SRV) = 4,547.2 m³

Further detail will be provided as part of the DA process, but it expected that this volume can be met through rainwater tanks for each lot, on-site detention storage and general allowance for ponding across the site.

5.4 Stormwater Detention

Due to the increase in imperviousness of the site as part of future development, it is expected that onsite detention (OSD) will be required for the site. The site is split broadly into two catchments, west and east, which drain into natural watercourses. This has been further broken down into 6 catchments to more easily fit the required OSD pond sizes within the development and maintain base flows through the upper reaches of the creeks. Stormwater detention has been addressed for each catchment separately with all OSD ponds designed in an offline configuration. DRAINS model results are contained at **Appendix B**.

The western catchment of the proposed development has an area of approximately 77,000 m² and drains to the natural drainage channel to the west of the site. The eastern catchment of the proposed development has an area of approximately 132,000 m² and drains to the natural drainage channel that crosses through the east of the site.

Approximately 2 hectares of the proposed rezoning site is made up of the existing drainage channels running through the site. Runoff from these areas will not differ pre- and post-development and has not been considered in the modelling.

Flow estimation calculations in the following sections have been determined using a RAFTS model set up in DRAINS software. Rainfall intensity was taken from the BoM website specifically for the site and the catchment areas were estimated based on site contour information.

5.4.1 DRAINS Model Results

A summary of the OSD requirements, based on the DRAINS modelling, is contained in the table below.

Table 5-1 Proposed OSD ponds

	Catchment Area	OSD Area	OSD Volume	Storm	Pre- development	Post- development with OSD	
		$100 m^{2} h = -$		1 yr ARI	136 L/s	132 L/s	
OSD 1	1.2 ha	120 m² base 450 m² top	400 m ³	10 yr ARI	386 L/s	342 L/s	
				100 yr ARI	760 L/s	747 L/s	
		050 24		1 yr ARI	480 L/s	481 L/s	
OSD 2	6.5 ha	950 m² base 1,950 m² top	2,100 m ³	10 yr ARI	1,540 L/s	1,510 L/s	
		1,000 11 100		100 yr ARI	2,910 L/s	2,830 L/s	
		100 31		1 yr ARI	136 L/s	132 L/s	
OSD 3	1.3 ha	120 m² base 450 m² top	400 m ³	10 yr ARI	386 L/s	342 L/s	
		400 11 100		100 yr ARI	760 L/s	747 L/s	
		6.5 ha 950 m² base 1,950 m² top	2,100 m ³	1 yr ARI	480 L/s	481 L/s	
OSD 4	OSD 4 6.5 ha			10 yr ARI	1,540 L/s	1,510 L/s	
				100 yr ARI	2,910 L/s	2,830 L/s	
		200 m² base 800 m² top	700 m ³	1 yr ARI	185 L/s	167 L/s	
OSD 5	1.9 ha			10 yr ARI	544 L/s	491 L/s	
		800 m- top		100 yr ARI	1,050 L/s	954 L/s	
		$480 \text{ m}^2 \text{ base}$ 1 300 m ³ 10 yr A	1 yr ARI	301 L/s	316 L/s		
OSD 6	3.5 ha			3.5 ha 480 m² base 1,3 1,300 m² top 1,3	3.5 ha 1.300 m ³	10 yr ARI	928 L/s
		1,500 m top		100 yr ARI	1,690 L/s	1,540 L/s	
				1 yr ARI	616 L/s	613 L/s	
Total East	7.7 ha	-	2,500 m ³	10 yr ARI	1,926 L/s	1,852 L/s	
Luot				100 yr ARI	3,670 L/s	3,577 L/s	
				1 yr ARI	1,102 L/s	1,096 L/s	
Total West	13.2 ha	-	4,500 m ³	10 yr ARI	3,398 L/s	3,204 L/s	
WGOL				100 yr ARI	6,410 L/s	6,071 L/s	
				1 yr ARI	1,718 L/s	1,709 L/s	
Total Site	20.9 ha		7,000 m ³	10 yr ARI	5,324 L/s	5,056 L/s	
				100 yr ARI	10,080 L/s	9,648 L/s	

The results show that discharge from the site can be effectively managed to within pre-development levels for both the eastern and western catchment. The OSD arrangements above will also result in only a 5% decrease in storm flows from pre-development levels, ensuring that flows to the downstream wetlands are maintained throughout all storm events.

The stormwater quality requirements for the site (refer Section 5.5) are proposed to be integrated within the OSD system.

5.4.2 Upstream Reaches

OSD 1 and OSD 3 are proposed to be located in the upper reaches of the proposed rezoning site to ensure that flows are maintained within the upstream reaches of the creeks. Due to the larger OSD ponds being located at the downstream end of the proposed rezoning site, it is likely that there will still be a reduction in flows in the upstream reaches of the site, however, flows into the downstream wetlands will not be affected.

If maintaining upstream creek flows is a key concern, smaller upstream discharge systems can be provided to better replicate the existing natural flow processes.

5.5 Stormwater Quality

Central Coast Council requires, as a minimum, the following reductions in total pollutant load, compared to untreated runoff from the predeveloped site.

Minimum Reduction
80%
45%
45%
80%

Table 5-2 Minimum pollutant reduction targets

5.5.2 Base Information

In accordance with industry best practice, a MUSIC model (Version 6.3.0) was used for the analysis and design of stormwater quality treatment train for the site. MUSIC modelling parameters were adopted using the Central Coast Council MUSIC-link data. The model was run over a rainfall period of 20 years (1/1/1974 to 31/12/1993) at a time-step of 6 minutes. The MUSIC model is shown in Figure 5-1 below.

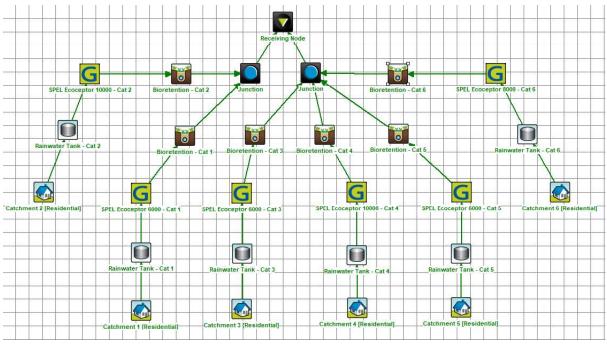


Figure 5-1 MUSIC model arrangement

5.5.3 Proposed Treatment

To meet the Central Coast Council pollutant reduction targets, it is proposed to provide a gross pollutant trap (GPT) and bioretention system at each OSD pond. The bioretention systems may be integrated into the base of the OSD ponds, however if this is undesirable due to potential clogging during large storm events, the bioretention systems may be constructed adjacent to the OSD ponds and connected to the low flow (typically up to 1-year) OSD outlet.

Each bioretention system was assumed to have:

- A saturated hydraulic conductivity of 100 mm/hour;
- TN filter content of 800 mg/kg;
- Orthophosphate filter content of 50 mg/kg;
- Unlined base with underdrain; and
- Effective nutrient vegetation.

The proposed bioretention system sizes are as follows:

	High Flow bypass (L/s)	Extended Detention Depth (m)	Filter Area (m ²)	Filter Depth (m)
Catchment 1	200	0.3	60	0.6
Catchment 2	500	0.3	280	0.6
Catchment 3	200	0.3	60	0.6
Catchment 4	500	0.3	280	0.6
Catchment 5	200	0.3	90	0.6
Catchment 6	400	0.3	150	0.6

Table 5-3 Proposed bioretention systems

In addition, each subdivision lot was modelled to have a 2,000 L rainwater tanks, consistent with BASIX minimum requirements, with water reuse set as 121 kL/year/lot and distributed based on Precipitation-Evapotranspiration patterns.

5.5.4 Results

Results from the preliminary MUSIC model for the proposed subdivision are shown in Table 5-4 and 0 below. The MUSIC-link report is contained at **Appendix C**.

Table 5-4 Catchment MUSIC model outputs

Pollutant	Western Catchment	Target Achieved?	Eastern Catchment	Target Achieved?
Total Suspended Solids (TSS)	81.7 %	Yes	82.0 %	Yes
Total Phosphorous (TP)	51.8 %	Yes	52.6 %	Yes
Total Nitrogen (TN)	45.0 %	Yes	45.5 %	Yes
Gross Pollutants (GP)	100 %	Yes	100 %	Yes

Table 5-5 Overall MUSIC model outputs

Pollutant	Post- development	Post- development with treatment	Pollutant reduction	Target Achieved?
Total Suspended Solids (TSS)	35,100 kg/yr	6,380 kg/yr	81.9 %	Yes
Total Phosphorous (TP)	56.6 kg/yr	27.0 kg/yr	52.3 %	Yes
Total Nitrogen (TN)	417 kg/yr	2228 kg/yr	45.3 %	Yes
Gross Pollutants (GP)	5,050 kg/yr	0 kg/yr	100 %	Yes

The results indicate that Council's pollutant reduction targets can be achieved through appropriately sized proprietary and non-proprietary devices.

5.6 Flooding Assessment

Central Coast Council flood mapping indicates that the site is not located on flood prone land (i.e. not situated within areas subject to flooding in storm events up to and including the Probable Maximum Flood (PMF)).

However, as mentioned above, existing drainage channels run to the east and west of the proposed rezoning site. A flood model has been prepared to assess the potential flood impacts of flows through these watercourses for the 1% AEP and PMF storm events.

We note that the site is within the study area for the Lake Macquarie Catchment Overland Flood Study currently which is being prepared by Central Coast Council and BMT and expected to be completed in 2019.

5.6.1 HEC-RAS

Two HEC-RAS models, 1-D and 2-D were constructed to simulate overland flows through the proposed rezoning site. Geometric data for both models was constructed using 1m LiDAR data from the Geoscience Australia database. For the rezoning process, the use of LiDAR data for flood modelling is considered acceptable, however detailed site survey information may be required for modelling for detailed design.

The 2-D model was set up as the primary model for flood mapping and used precipitation as the input for flows. As the 2-D HEC-RAS model does not have initial and ongoing loss capabilities at the current time, a 1-D model was set up to calibrate flow outputs between models. The 1-D model was also used to compare between pre= and post-development flood scenarios.

5.6.2 1-D Model

The 1-D model was set up and exported from Civil Site Design (a CAD attachment). Manning's roughness values of 0.04 and 0.06 were set for the main channel and overbank flows, respectively. Locations of the transition between the main channel and banks were approximated based on the channel cross sections. The site was separated into three creeks as shown in Figure 5-2 below.

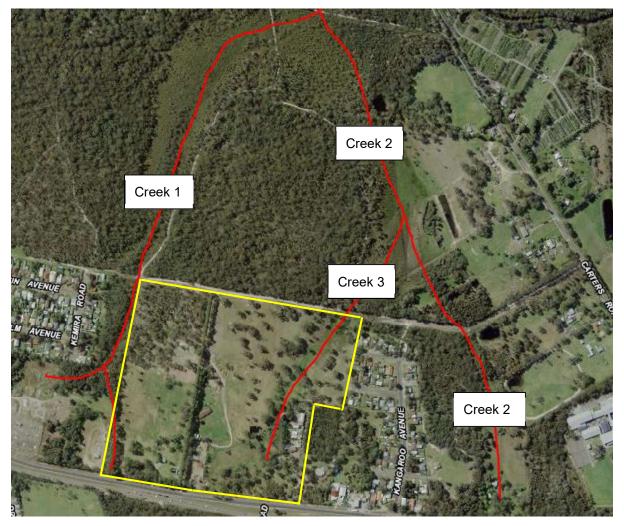


Figure 5-2 1-D HEC-RAS model arrangement

As Creeks 1 and 2 drain into Lake Macquarie, the downstream boundary condition was set to the 1% AEP lake flood level. The Lake Macquarie Waterway Flood Risk Management Study and Plan (2011) prepared by WMA Water on behalf of Lake Macquarie Council indicates a 1% AEP water level of 1.70 m AHD for rainfall dominated events coinciding with a major ocean storm event. This was considered to be a conservative modelling approach, given the significant difference in catchment size and time of concentration between the lake and the proposed rezoning site. However, due to the level difference between the lake and proposed rezoning site, the lake tailwater is not expected to have a significant impact on flood levels for the site.

Flow inputs for the 1D model were calculated using the rational method and the rainfall intensity for the 1% AEP 2-hour storm event (taken from the Bureau of Meteorology website specifically for the site). The runoff coefficient was estimated based on the Gosford City Council Civil Works Specification – Design. Catchment flows were calculated for the total catchment area, and for the catchment areas upstream of the proposed rezoning site. The catchment flows were then apportioned into inputs for the model at 100 m intervals, as shown in the table below.

Cupô

	Creek Length	Upstream Peak Flow	Total Peak Flow	Peak Flow per Creek Segment
Creek 1	1,240 m	1.61 m³/s	11.8 m³/s	0.85 m³/s/100 m
Creek 2	1,220 m	3.06 m³/s	11.2 m³/s	0.68 m³/s/100 m
Creek 3	785 m	0.15 m³/s	4.9 m³/s	0.59 m³/s/100 m

5.6.2.1 Results

The results show that, upstream of the existing floodplain/wetland (approx. chainage 250 m of Creeks 1 and 2), 1% AEP storm flows are contained within the main creek channels, with the following characteristics. Outputs, including long sections and cross sections, are contained at **Appendix D**.

	Minimum	Maximum	Average
Flow Depth	105 mm	1,370 mm**	<u>444 mm</u>
Flow Velocity	0.03 m/s	1.27 m/s	<u>0.58 m/s</u>
Flow Width	24 m	539 m**	<u>137 m</u>

Table 5-6 HEC-RAS 1D Results 1% AEP Storm - Creek 1

Table 5-7 HEC-RAS 1D Results 1% AEP Storm - Creek 2

	Minimum	Maximum	Average
Flow Depth	105 mm	1,350 mm**	<u>488 mm</u>
Flow Velocity	0.04 m/s	1.26 m/s	<u>0.58 m/s</u>
Flow Width	31 m	547 m**	<u>147 m</u>

Table 5-8 HEC-RAS 1D Results 1% AEP Storm - Creek 3

	Minimum	Maximum	Average
Flow Depth	60 mm	1,920 mm**	<u>277 mm</u>
Flow Velocity	0.02 m/s	1.00 m/s	<u>0.53 m/s</u>
Flow Width	7.6 m	253 m	<u>50 m</u>

**Note that the maximum water level and flow width are at the tailwaters of each creek and influenced by the downstream conditions. The average values are more representative of the flow levels and widths through the development site.

5.6.3 2-D Model

The 2-D HEC-RAS model was set up for the full catchment areas of Creeks 1, 2 and 3. As with the 1-D model, the downstream boundary condition was set to a maximum level of 1.7 m AHD. This was converted to a time series to better simulate water level change over the storm duration. A Mannings roughness of 0.04 was applied across the modelled area.

Rainfall data for the 100-year, 2-hour storm was taken from the Bureau of Meteorology Intensity Frequency Duration (IFD) online calculator specifically for the site. The data was downloaded on a 5-minute time step and converted (using linear interpolation) to 1-second data for use in the model. The rainfall was applied over the entire modelled catchment.

Due to the extent of the model, the grid size was set to 5 m^2 to allow for quicker iterations of model runs. The grid size was improved to 1 m^2 along the centreline of the creeks to provide additional detail of water movement through these areas. The model was run at a 1-second calculation step with outputs on a 30-second timestep. The model was run as an unsteady flow model.

5.6.3.1 Results

Results of the 2-D HEC-RAS matched up well with the 1-D model results for the main creeks. The 2-D model provided additional detail for the smaller channels feeding into the main creeks, however these were outside the boundaries of the proposed rezoning site. The modelled flood extent, including flood contours, is contained at **Appendix A**.

When compared to preliminary subdivision layouts, the modelling indicates that some areas of the proposed development site may need to be raised to provide freeboard to the 1% AEP flood level. Preliminary sketches showing cut and fill across the site are contained at **Appendix A**.

5.6.4 Probable Maximum Flood (PMF)

The Probable Maximum Precipitation (PMP) across the catchment was modelled to assess the likely extent of the PMF event compared to the 1% AEP event. The PMP was estimated using the Generalised Short-Duration Method (GSDM), which is applicable to sites up to 1,000 km² and storm durations of 6 hours (applicable to the rezoning site). The catchment is approximately 2 km², with the 2-hour storm expected to be most critical.

Based on the GSDM, the following factors were considered appropriate for the proposed rezoning site:

- 'Smooth' catchment, maximum grade of 10%
- Catchment elevation less than 1,500 m, therefore Elevation Adjustment Factor is equal to 1.
- Moisture Adjustment Factor of 0.72
- 2-hour 'smooth' rainfall depth of 628 mm

Based on this, the PMP value for a 2-hour storm event is 450 mm or 225 mm/hr. The spatial distribution of the PMP was assumed to be uniform across the site, due to the relatively small size of the catchment (less than 2.6 km²).

Results of the 2D HEC-RAS model with the PMP applied, indicate that, throughout the proposed rezoning site, the maximum increase water level from the 1% AEP to the PMP event is 360 mm. Therefore, the critical storm event for determining site flood levels is the 1% AEP plus 500 mm freeboard.

5.6.5 Model Sensitivity

A sensitivity analysis was run for the 2D model to assess the impact of catchment roughness on water levels throughout the proposed development site. A 25% increase and decrease were applied to the roughness in the model. The outputs indicate that a change in roughness would have only minor impacts on water levels, with an average change of 9 mm and maximum change of around 70 mm.

5.6.6 Post-Development

A post-development 1-D model of Creek 3 was prepared to assess the impacts of the development on the creek. Based on current plans, Creeks 1 and 2 were not expected to be significantly impacted by the proposed rezoning and have not been included in this modelling.

Flows in the 1-D model were not changed which was considered to be a conservative modelling approach due to:

- the OSD ponds discharging into the creek further downstream than the natural discharge locations into the creek.
- the OSD ponds (slightly) reducing post-development flow compared to pre-development creek flow.

The results of the modelling are contained in the table below:

Cupô

	Minimum		Maxi	Maximum		Average	
	Pre-	Post-	Pre-	Post-	Pre-	Post-	Difference
Flow Depth	60 mm	60 mm	1.90 m**	1.90 m**	<u>277 mm</u>	<u>278 mm</u>	<u>+1 mm</u>
Flow Velocity	0.02 m/s	0.02 m/s	1.00 m/s	1.00 m/s	<u>0.53 m/s</u>	<u>0.55 m/s</u>	<u>+0.02 m/s</u>
Flow Width	7.6 m	7.89 m/s	253 m	253 m	<u>50 m</u>	<u>47.2 m</u>	<u>-2.8 m</u>

Table 5-9 HEC-RAS 1D Results 1% AEP Storm Post-Development - Creek 3

**Note that the maximum water level and flow width are at the tailwaters of each creek and influenced by the downstream conditions. The average values are more representative of the flow levels and widths through the development site.

The results indicate that the proposed rezoning is likely to reduce the flow area of the creek during the 1% AEP storm event, primarily through restricting the flow width of the channel (up to 20 m reduction in some areas). Due to the grade of the creek, this loss of flow area is primarily transferred into a change in velocity, rather than a change in water depth. In the narrowed sections of creek, velocities increase by up to 0.12 m/s (approx. 21%) compared to pre-development whilst the water levels in these areas increase by up to 30 mm (approx. 18%).

On average, the proposed rezoning (and subsequent development) may have localised impacts on the flow within Creek 2, however the overall impact on creek flows, particularly downstream of the site, are not expected to be significant.

5.7 Downstream Wetland Management Area

The wetland area downstream of the proposed rezoning site is classified as a Wetland Management Area and SEPP 14 Coastal Wetland in DCP 2013 Section 3.10. The proposed rezoning and development do not overlap with the wetland area.

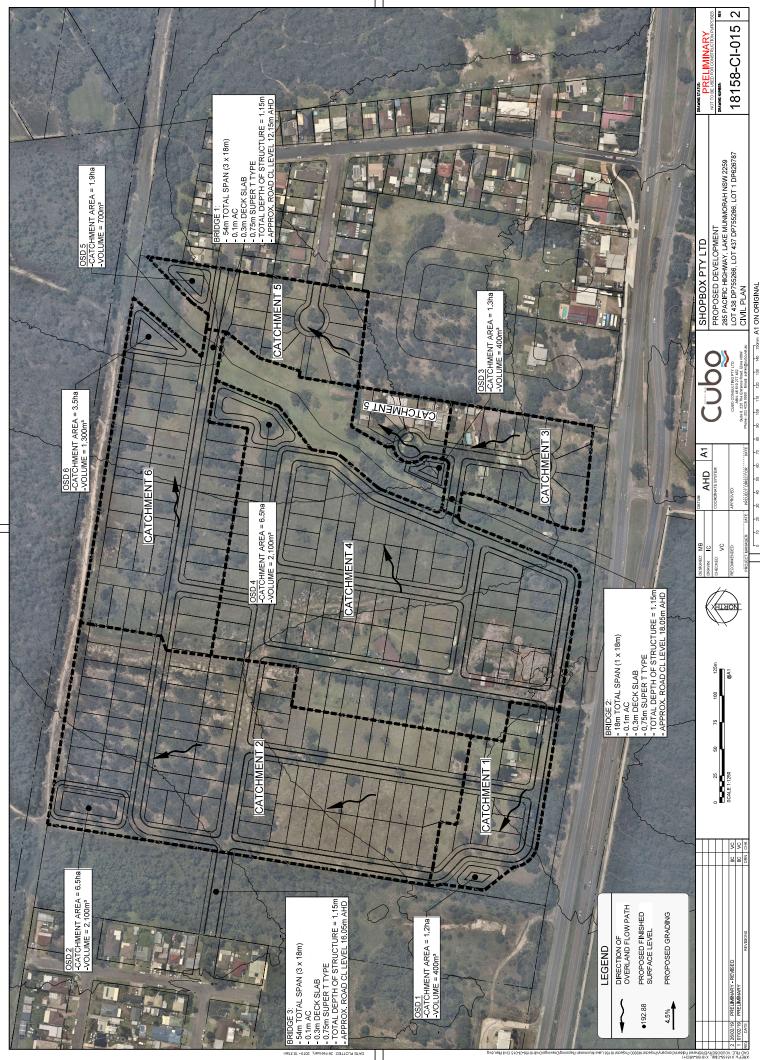
The proposed stormwater management for the rezoning site aims to control and treat runoff from the site, to as close as possible mimic existing flows and water quality entering the downstream wetlands. The results of preliminary modelling indicate that this is achievable.

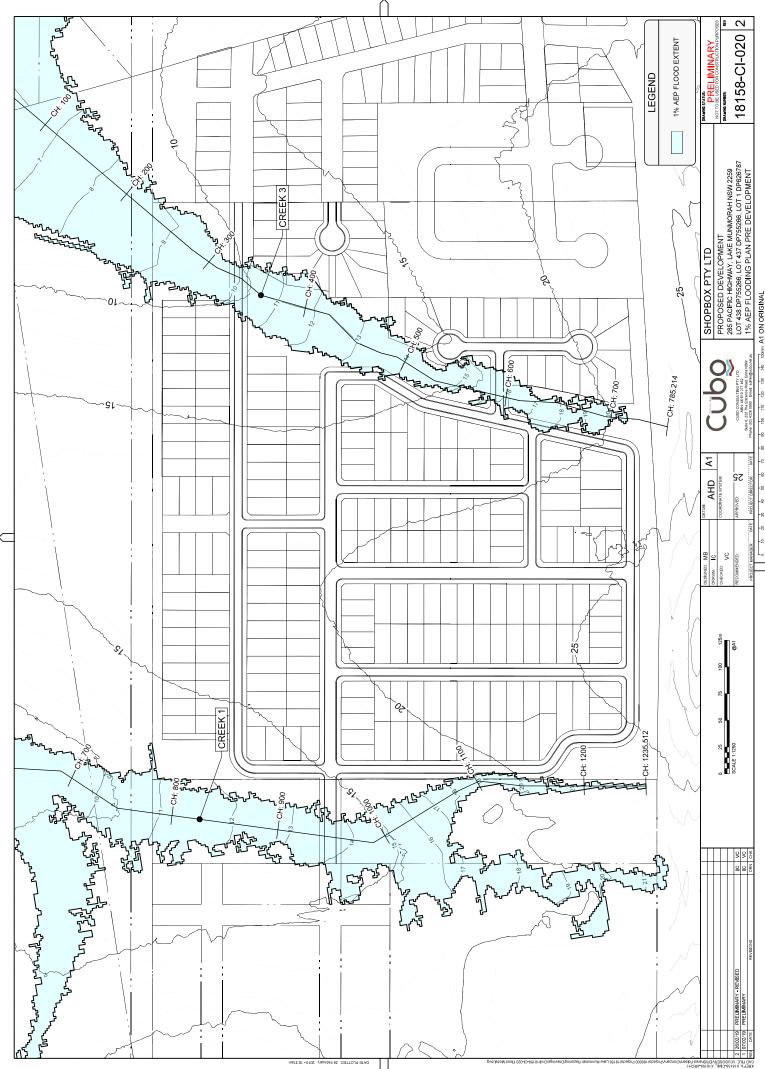
Detailed sediment and erosion control plans will be required to ensure that sediment transport to the wetlands in minimised during the construction phase.

Cupô

6 References

Bureau of Meteorology. Online IFD Calculators
Central Coast Council. Former Wyong LGA Online Mapping
Central Coast Council. (2013). Wyong Development Control Plan (DCP) 2013
Central Coast Council. (2018). Civil Works Specification Design Guideline
Geoscience Australia. Online ELVIS Database
Gosford City Council. (November 2015). Gosford City Council Civil Works Specification - Design
NSW Government Department of Environment. Online eSpade soil mapping
NSW Government Department of Finance and Service. Online SIX Maps and e-Topography
NSW Government Department of Industry. (May 2018). Guidelines for controlled activities on waterfront land – Riparian Corridors.
NSW Government Department of Resources & Energy. Online 1:100,000 Soil landscape mapping
WMA Water. (2011). Lake Macquarie Waterway Flood Risk Management Study and Plan




7 Appendices

APPENDIX A

A. Cubo Drawings 18104-CI

APPENDIX B

B. DRAINS Model Set Up and Outputs

PIT / NODE DETAILS Name	Туре	Family	Version 14 Size	Ponding Volume	Pressure Change	Surface Elev (m)	Max Pond Depth (m)	Base Inflow	Blocking Factor	×	Bolt-down lid	id Part Full Shock Loss		Pit is aph	-	Inflow is Minor Safe Misaligned Pond Depth	afe Major Safe epth Pond Depth
N83 N85 N6779	Node Node Node				Coeff. Ku		40 34 39	(cu.m/s)	000	965.2 1169 1245.718 -4	-527.2 -369 -427.431	171 173 18349	° ° ° N N N			(E)	(m)
DETENTION BASIN DETAILS Name Basin786	Elev 37.5 37.5	Surf. Area 5 120 9 450	Surf. Area Not Used 120 450	Outlet Type None	×	Dia(mm)	Centre RL	Pit Family	Pit Type	x 1385.185 -4	HED -489.352 No	Crest RL Crest Length(m) id	Length(m) id	18352			
SUB-CATCHMENT DETAILS Name Cat5430 Cat54	Pit or Node N83 Basin786	Total I Area / 1.3	Impervious Area 3	Avg Slope(%) 0 5 70 5	Mannings Time lag n (mins) 5 0.035 5 0.025	Time lag (mins)	Rainfall Multiplier 0	Hydrological Model 1 LakeM 1 LakeM									
OVERFLOW ROUTE DETAILS Name OF6108	From Basin 786	To N6779	Travel Time (min)	Spill 6 Level 1 (m) 37.5	Crest Length (m)	Weir Coeff. C	Cross Section Pathway 4m wide	Safe Depth Major Storms (m) 0.3	SafeDepth Minor Storms (m) 3.0.3	Safe Bed DxV Slope (sq.m/sec) (%) 3 0.6	D/S Area e Contributing 2	ā	U/S IL 21191	IL D/S IL Length (m) 37.5 37.4 5	ength (m) 5		
Name OF15	From N6779	To N85	Length (m)	Spill Level (m) 120	Crest Length (m)	Weir Coeff. C	Cross Section Large Creek	Safe Depth Major Storms (m) 0.3	safe Depth SafeDepth Major Storms Minor Storms (m) (m) 0.3 0.3	Safe Bed DxV Slope (sq.m/sec) (%) 3 0.6	D/S Area contributing 3.33	id	U/S IL (m) 179	IL D/S IL (m) 37.4 34	120		
This model has no pipes with non-return valves LAKE MUNMORAH REZONING OSD 2 AND 4 MODEL DETAILS	DETAILS																
PIT / NODE DETAILS Name N83 N85	Type Node Node	Family	Version 14 Size	Ponding Volume (cu.m)	Pressure Change Coeff. Ku	Surface Elev (m)	Max Pond Depth (m) 40	Base Inflow (cu.m/s)	Blocking Factor 0	х У 965.2	Bolt-down Iid -527.2 -360	id Part Full Shock Loss 171	s	Pit is raph	Internal Infl Width Mi (mm)	Inflow is Minor Safe Misaligned Pond Depth (m)	afe Major Safe epth Pond Depth (m)
NGS NG779 AFTENTION PAGEN AFTEN G	Node						39 39				-309 -427.431	1/3 18349	N N				
DELENTION BASIN DELALS Name Basin786	Elev 37.5 39	Surf. Area 5 950 9 1950	Surf. Area Not Used 950 1950	Outlet Type K None		Dia(mm)	Centre RL	Pit Family	Pit Type	х У 1385.185 -4	НЕD -489.352 No	Crest RL Crest Length(m) id	Length(m) id	18352			
suB-CATCHMENT DETAILS Name Cat5430 Cat54	Pit or Node N83 Basin786	Total I Area / 6.5	Impervious Area 5	Avg Slope(%) 0 5 70 5	Mannings Time lag n (mins) 0.035 0.025	Time lag (mins)	Rainfall Multiplier 0	Hydrological Model 1 LakeM 1 LakeM									
OVERFLOW ROUTE DETAILS Name OF6108	From Basin 786	To N6779	Travel Time (min)	Spill Level (m) 37.5	Crest Length (m)	Weir Coeff. C	Cross Section Pathway 4m wide	Safe Depth Major Storms (m) 0.3	SafeDepth Minor Storms (m) 0.3	Safe Bed DxV Slope (sq.m/sec) (%) 3 0.6	D/S Area e Contributing 2	id	U/S IL 21191	IL D/S IL Length (m) 37.5 37.4 5	ength (m) 5		
Name OFIS	From N6779	To N85	Length (m)	Spill Level (m) 120	Crest Length (m)	Weir Coeff. C	Cross Section Large Creek	Safe Depth Major Storms (m) 0.3	safe Depth SafeDepth Major Storms Minor Storms (m) 0.3 0.3	Safe Bed DxV Slope (sq.m/sec) (%) 3 0.6	D/S Area contributing 3.33	ē	U/SIL (m) 179	IL D/S IL (m) 37.4 34	120		

LAKE MUNMORAH REZONING OSD 1 AND 3 MODEL DETAILS

This model has no pipes with non-return valves

LAKE MUNMORAH REZONING OSD 5 MODEL DETAILS	TAILS																	
PIT / NODE DETAILS Name	Type	Family	Version 14 Size	Ponding Volume	Pressure Change	Surface Elev (m)	Max Pond Depth (m)	Base E Inflow F	Blocking Factor	×	Bolt-down lid	id Part Full Shock Loss	Inflow Hydrograph	Pit is	Internal Inf Width Mi	Inflow is N Misaligned P	Minor Safe Ma Pond Depth Por	Major Safe Pond Depth
N83 N85 N6779	Node Node Node			(cu.m)	Coeff. Ku		40 34 39	(cu.m/s) 0 0		965.2 -5 1169 1245.718 -427	-527.2 -369 -427.431	171 173 18349	° ° °			L)	(m) (m)	_
DETENTION BASIN DETAILS Name Basin786	Elev 3	Surf. Are 37.5 2 39 8	Surf. Area Not Used 200 800	Outlet Type K None	ъ	Dia(mm)	Centre RL	Pit Family F	Pit Type	x y 1385.185 -489	HED -489.352 No	Crest RL Crest Length(m) id		18352				
SUB-CATCHMENT DETAILS Name Cat5430 Cat54	Pit or Node N83 Basin786	Total Area	Impervious Area 1.9	Avg Slope(%) 0 70	Mannings ⁻ n 5 0.035 5 0.025	Mannings Time lag n (mins) 0.035	Rainfall Multiplier 0	Hydrological Model 1 LakeM 1 LakeM										
OVERFLOW ROUTE DETAILS Name OF6108	From Basin 786	To 86 N6779	Travel Time (min)	Spill Level (m) 0.1	Crest Length (m) 37.5	Weir Coeff. C	Cross Section Pathway 4m wide	Safe Depth Major Storms (m)	SafeDepth Minor Storms (m) 0.	Safe Bed DxV Slope (sq.m/sec) (%) 0.3 0.6	D/S Area Contributing % 2 0	ā	U/S IL 21191	D/S IL Length (m) 37.5 37.4 5	ngth (m) 5			
Name OF1S	From N6779	To N85	Length (m)	Spill Level (m) 120	Crest Length (m)	Weir Coeff. C	Cross Section Large Creek	Safe Depth SafeDepth Major Storms Minor Storms (m) (m) 0.3		Safe Bed DxV Slope (sq.m/sec) (%) 0.3 0.6	D/S Area Contributing % 3.33 0	ā	U/S IL (m) 179	D/S IL (m) 37.4 34	120			
This model has no pipes with non-return valves LAKE MUNMORAH REZONING OSD 6 MODEL DETAILS	TAILS																	
PIT / NODE DETAILS Name N83 N85 N579	Type Node Node	Family	Version 14 Size	Ponding Volume (cu.m)	Pressure Change Coeff. Ku	Surface Elev (m)	Max Pond Depth (m) 40 34	Base E Inflow F (cu.m/s) 0 0 0	Blocking Factor	× Y 965.2 -5 1169 1245.718 -427	Bolt-down lid -527.2 -369 -427.431	id Part Full Shock Loss 171 13349	Inflow Hydrograph No No	Pit is	Internal Inf Width Mi (mm)	Inflow is N Misaligned P (r	Minor Safe Maji Pond Depth Pon (m) (m)	Major Safe Pond Depth (m)
DETENTION BASIN DETAILS Name Basin786	Elev	Surf. Are 37.5 4 39 13	Surf. Area Not Used 480 1300	Outlet Type None	e X	Dia(mm)	Centre RL	Pit Family F	Pit Type	х у 1385.185 -489	HED -489.352 No	Crest RL Crest Length(m) id		18352				
SUB-CATCHMENT DETAILS Name Cat5430 Cat54	Pit or Node N83 Basin786	Total Area	Impervious Area 3.5	Avg Slope(%) 0 70	Mannings n 5 0.035 5 0.025	Mannings Time lag n (mins) 0.035 0.025	Rainfall Muttiplier 0	Hydrological Model 1 LakeM 1 LakeM										
OVERFLOW ROUTE DETAILS Name OF6108	From Basin 786	To 86 N6779	Travel Time (min)	Spill Level (m) 0.1	Crest Length (m) 37.5	Weir Coeff. C	Cross Section Pathway 4m wide	Safe Depth Major Storms (m) 0.3	SafeDepth Minor Storms (m)	Safe Bed DxV Slope (sq.m/sec) (%) 0.3 0.6	D/S Area Contributing % 2 0	Ē	U/S IL 21191	D/S IL Length (m) 37.5 37.4 5	ngth (m) 5			
Name OF15	From N6779	To N85	Length (m)	Spill Level (m) 120	Crest Length (m)	Weir Coeff. C	Cross Section Large Creek	safe Depth SafeDepth Major Storms Minor Storms (m) (m) 0.3		Safe Bed DxV Slope (sq.m/sec) (%) 0.3 0.6	D/S Area Contributing % 3.33 0	id	U/S IL (m) 179	D/S IL (m) 37.4 34	120			

This model has no pipes with non-return valves

LAKE MUNMORAH REZONING OSD 1 AND 3 - 1 YEAR ARI FLOOD EVENT

DRAINS results prepared from Version 2018.09

URAINS results prepared from Version 2018.09					
PIT / NODE DETAILS Name	Max HGL Max Pond HGL	Ve Max Surface M Flow Arriving Ve	Version 8 Max Pond Min Volume Free	Min Overflow Freeboard (cu.m/s)	/ Constraint
N6779	37,46	0.132			
SUB-CATCHMENT DETAILS Name	Max Due to Storm				
Cat5430 Cat54	Flow (cu.m/s) 0.136 AR&R 1 year, 2 hours storm, average 17.7 mm/h, Zone 1 0.238 AR&R 1 year, 30 minutes storm, average 42.2 mm/h, Zone 1				
Outflow Volumes for Total Catchment (0.91 impervious + 1.69 pervious = 2.60 total ha) Storm	Total Rainfall Total Runoff	jt	Pervious Runoff		
AR&R 1 year, 5 minutes storm, average 93.3 mm/h, Zone 1	cu.m cu.m (Runoff %) 202.15 69.16 (34.2%)	cu.m (Runoff %) cu 69.16 (97.7%) 0.	cu.m (Runoff %) 0.00 (0.0%)		
AR&R 1 year, 10 minutes storm, average 73.7 mm/h, Zone 1 AR&R 1 vaar 20 minutese storm average 53 mm/h Zone 1	319:37 147.21 (46.1%) 459 33 323 97 67 64.6%)	112.17 (100.4%) 35 160.45 (99.8%) 13	35.04 (16.9%) 1 2 2 46 (41 0%)		
AR&R 1 year, 30 minutes storm, average 42.2 mm/h, zone 1	548.6 366.15 (66.7%)		175.75 (49.3%)		
AR&R 1 year, 1 hour storm, average 27.6 mm/h, Zone 1 AR&R 1 vear - 2 hours storm: average 17.7 mm/h. Zone 1	717.6 522.87 (72.9%) 920 42 695 60 (75.6%)	249.17 (99.2%) 27 318 42 (98.8%) 37	273.70 (58.7%) 377 19 (63 0%)		
AR&R 1 year, 6 hours storm, average 8.93 mm/h, Zone 1	1393.34 1042.41 (74.8%)		581.13 (64.2%)		
AR&R 1 year, 9 hours storm, average 6.39 mm/h, Zone 1 AR&R 1 year, 72 hours storm, average 1.79 mm/h, Zone 1	1635.66 1195.28 (73.1%) 3349.84 1905.77 (56.9%)	533.29 (93.2%) 66 935.71 (79.8%) 97	661.99 (62.3%) 970.06 (44.6%)		
PIPE DETAILS Name	Max Q Max V (cu.m/s) (m/s)	0H (ɯ) TĐH W S/N XEW	Max D/S Du HGL (m)	Due to Storm	
CHANNEL DETAILS Name	Max Q Max V (cu.m/s) (m/s)		Du	Due to Storm	
OVERFLOW ROUTE DETAILS Name 0F15 OF6108	Max QU/S Max QD/S 0.13 0.132 0	Safe Q M 0.13 2.249 0.132 1.844	Max D Ma 0.06 0.079	Max DxV Max Wi 0.04 0.09	Max Width Max V Due to Storm 3.3 0.73 AR&R 1 year, 20 minutes storm, average 53 mm/h, Zone 1 3.17 1.1 AR&R 1 year, 20 minutes storm, average 53 mm/h, Zone 1
DETENTION BASIN DETAILS Name	Max WL MaxVol	Max Q Max A	Max Q Ma Mar Discol	Max Q	
Basin786	38.01	0.132	0	л цемен 0.132	
CONTINUITY CHECK for AR&R 1 year, 2 hours storm, average 17.7 mm/h, Zone 1 Node	Inflow Outflow	e Change	Difference		
N83 N85	(cu.m)	(cu.m) 295.21 0 400.12 0			
N6779 Basin786	399.75 309.76 400 400 400 400 400 400 400 400 400 40	400.12 0 399.75 0.65	-0.1 0		
Run Log for Dev multiple OSD 1 and 3 WORKING $$ run at 09:29:18 on 6/2/2019					

LAKE MUNMORAH REZONING OSD 2 AND 4 - 1 YEAR ARI FLOOD EVENT

DRAINS results prepared from Version 2018.09

DRAINS results prepared from Version 2018.09					
PIT / NODE DETAILS Name	Max HGL Max Pond HGL	Max Surface Flow Arriving (cri m /s)	Version 8 Max Pond N Volume F (cum)	Min Overflow Freeboard (cu.m/s) (m)	wv Constraint s)
N6779	37.53	0.481	(Ĩ	
SUB-CATCHMENT DETAILS Name	Max Due to Storm Flow for meta				
Car5430 Car54	(u.u.u.) 0.48 AR&R.1 year, 2 hours storm, average 17.7 mm/h, Zone 1 1.485 AR&R 1 year, 30 minutes storm, average 42.2 mm/h, Zone 1				
Outflow Volumes for Total Catchment (4.55 impervious + 8.45 pervious = 13.0 total ha) Storm	Rainfall	Impervious Runoff	Pervious Runoff		
AR&R 1 year, 5 minutes storm, average 93.3 mm/h, Zone 1	cu.m cu.m (Runoff %) 1010.75 345.52 (34.2%)	cu.m (Runoff %) 345.52 (97.7%)	cu.m (Runoff %) 0.00 (0.0%)		
AR&R 1 year, 10 minutes storm, average 73.7 mm/h, Zone 1 AR&R 1 vear. 20 minutes storm, average 53 mm/h, Zone 1	1596.83 716.63 (44.9%) 2296.67 1395.10 (60.7%)	541.43 (96.9%) 782.80 (97.4%)	175.19 (16.9%) 612.30 (41.0%)		
AR&R 1 year, 30 minutes storm, average 42.2 mm/h, Zone 1	2743 1811.26 (66.0%)	932.54 (97.1%)	878.72 (49.3%)		
AR&R 1 year, 1 hour storm, average 27.6 mm/h, Zone 1	3588 2593.66 (72.3%) AGOD 11 2460 76 (72.3%)	1225.17 (97.6%) 1564 36 (07.1%)	1368.49 (58.7%) 1005 D0 (52 0%)		
AR&R 1 year, 5 Hours storm, average 17.7 Hill/H, Zone 1 AR&R 1 year, 6 hours storm, average 8.93 mm/h, Zone 1	6066.7 5211.68 (74.8%)	2306.01 (94.6%)	2905.66 (64.2%)		
AR&R 1 year, 9 hours storm, average 6.99 mm//h, Zone 1	8178.3 5974.93 (73.1%)	2664.98 (93.1%)	3309.95 (62.3%)		
AK&K I Year, / 2 hours storm, average 1./9 mm/n, 20ne 1	To/49.7 2528.04 (%)	46/8.33 (/9.8%)	4850.32 (44.6%)		
PIPE DETAILS				,	
Name	Max Q Max V (cu.m/s) (m/s)	Max U/S HGL (m)	Max D/S D HGL (m)	Due to Storm	
CHANNEL DETAILS Name				Due to Storm	
	(cu.m/s) (m/s)				
OVERFLOW ROUTE DETAILS		0-9-5			
NAME OF15	Miax Q. U/3 .48	2.249	0.129		1.14
OF6108				0.2	
DETENTION BACIN DETAILS					
Name	Max WL MaxVol	Max Q	Max Q N	Max Q	
Basin786	38.1	Total 680 0.481	Low Level 0	High Level 0.481	
CONTINUITY CHECK for AR&A 1 year, 2 hours storm, average 17.7 mm/h, Zone 1 Node	Inflow Outflow	Storage Change	Difference		
	(cu.m)	(cu.m)	%		
N83 N85	1449.21 144 1990.25 199	1449.21 0 1990.25 0			
N6779 Basin786		14.3	-0.2 0		
Run Log for Dev multiple OSD 2 and 4 WORKING run at 09:35:22 on 6/2/2019					

LAKE MUNMORAH REZONING OSD 5 - 1 YEAR ARI FLOOD EVENT

DRAINS results prepared from Version 2018.09

URAINS results prepared from Version 2016.09						
PIT / NODE DETAILS Name	Max HGL Max Pond HGL	Max Surface Flow Arriving	Version 8 Max Pond Volume	Min Ov Freeboard (cu	Overflow Cor (cu.m/s)	Constraint
N6779	37.47	(cu.m/s) 0.167	(cu.m)	(m)		
SUB-CATCHMENT DETAILS Name	Max Due to Storm Flow					
Car5430 Car54	(cu.m/s) 0.185 AR&R 1 year, 2 hours storm, average 17.7 mm/h, Zone 1 0.436 AR&R 1 year, 30 minutes storm, average 42.2 mm/h, Zone 1					
Outflow Volumes for Total Catchment (1.33 impervious + 2.47 pervious = 3.80 total ha) Storm	Rainfall	Impervious Runoff	Pervious Runoff			
AR&R 1 year, 5 minutes storm, average 93.3 mm/h, Zone 1 AR&R 1 year, 10 minutes storm, average 73.7 mm/h, Zone 1	cu.m 295.45 101.00 (34.2.%) 466.77 214.96 (46.1%)	си.т (Килотт %) 101.00 (97.7%) 163.75 (100.2%)	си.т (кипот %) 0.00 (0.0%) 51.21 (16.9%)			
AR&R 1 year, 20 minutes storm, average 53 mm/h, Zone 1 AR&R 1 year, 30 minutes storm, average 42.2 mm/h, Zone 1	671.33 413.06 (61.5%) 801.8 534.53 (66.7%)	234.08 (99.6%) 277.68 (98.9%)	178.98 (41.0%) 256.86 (49.3%)			
AR&R 1 year, 1 hour storm, average 27.6 mm/h, Zone 1 AR&R 1 year, 2 hours storm, average 17.7 mm/h, Zone 1 AR&R 1 year, 2 hours storm, average 17.7 mm/h, Zone 1	1048.8 763.78 (72.8%) 1445.23 1016.56 (75.6%) 2005.51 2010.56 (75.6%)	363.77 (99.1%) 465.30 (98.8%)	400.02 (58.7%) 551.27 (63.0%)			
Arown 1 year, o nours sound, aret age ex 30 min/11, zone 1 AR&R 1 year, 9 hours storm, average 6.99 mm/h, Zone 1 AR&R 1 year, 72 hours storm, average 1.79 mm/h, Zone 1	2030.58 1747.80 (73.1%) 2390.58 1747.80 (73.1%) 4895.92 2795.36 (57.1%)	0,4./0 (94./%) 780.27 (93.3%) 1377.59 (80.4%)	967.53 (62.3%) 1417.77 (44.6%)			
PIPE DETAILS Name	V xeM D xeM (cu.m/s) (m/s)	Max U/S HGL (m)	Max D/S HGL (m)	Due to Storm		
CHANNEL DETAILS Name	Max Q Max V (cu.m/s) (m/s)			Due to Storm		
OVERFLOW ROUTE DETAILS Name OF15 OF6108	Max Q U/S Max Q D/S 0.165 0.167 0.16	Safe Q 0.165 2.249 0.167 1.844	Max D 0.07 0.085	Max DxV 0.05 0.1	Max Width Max V 3.35 3.42	 XV Due to Storm 0.79 AR&R 1 year, 2 hours storm, average 17.7 mm/h, Zone 1 1.15 AR&R 1 year, 2 hours storm, average 17.7 mm/h, Zone 1
DETENTION BASIN DETAILS Name Basin786	Max WL MaxVol 38.11	Max Q Total 178.1 0.167	Max Q Low Level 0	Max Q High Level 0.167		
CONTINUITY CHECK for AR&R 1 year, 2 hours storm, average 17.7 mm/h, Zone 1 Node		Storage Change	Difference			
N83 N85 N6779 Basin736	(cu.m) (cu.m) 431.54 (cu.m) 43 583.68 585.02 5888.02 588.000 588.000 588.000 588.00000000000	(cu.m) (cu.m) 0 584.7 0 584.7 0 583.68 1.33	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
Run Log for Dev multiple OSD 5 WORKING run at 14:55:01 on 6/2/2019						

LAKE MUNMORAH REZONING OSD 6 - 1 YEAR ARI FLOOD EVENT

DRAINS results prepared from Version 2018.09

URAINS results prepared from Version 2016.09					
PIT / NODE DETAILS Name	Max HGL Max Pond HGL	Max Surface Flow Arriving	Version 8 Max Pond Volume	Min Overflow Freeboard (cu.m/s)	ow Constraint s)
N6779	37.5	0.316	(min)	fm.	
SUB-CATCHMENT DETAILS Name	Max Due to Storm Flow				
Cat5430 Cat54	(cu.m/s) 0.301 AR&R 1 year, 2 hours storm, average 17.7 mm/h, 2one 1 0.302 AR&R 1 year, 30 minutes storm, average 42.2 mm/h, 2one 1				
Outflow Volumes for Total Catchment (2.45 impervious + 4.55 pervious = 7.00 total ha) Storm	Total Rainfall Total Runoff	Impervious Runoff	Pervious Runoff		
AR&R 1 year, 5 minutes storm, average 93.3 mm/h, Zone 1 AR&R 1 year, 10 minutes storm, average 73.7 mm/h, Zone 1	544.25 859.83	295.18 (98.1%) 295.18 (98.1%)	0.00 (0.0%) 94.34 (16.9%)		
Arex 1 year, 50 minutes storm, average 35 min/m, 20me 1 AR&R 1 year, 30 minutes storm, average 42.2 mm/h, 20me 1 AR&R 1 year, 30 minutestorm, average 42.2 mm/h, 20me 1	12-30.07 / 744.15 (91.10%) 1477 (97.62 %) 1927 14/06 52 / 77 26.2%	(%1.06) 424.45 504.81 (97.7%) 562 64 98 192	473.16 (49.3%) 736 88 (58 7%)		
Arkst 1 year, 1 nour storm, serves 2.2.0 mm/h, cone 1 AR&R 1 year, 2 hours storm, severage 17.7 mm/h, cone 1 AR&R 1 year, 6 hours storm, severage 8.93 mm/h, Zone 1	2478.06 1865.88 (75.3%) 2478.06 1865.88 (75.3%) 3751.3 2807.31 (74.8%)	850.39 (98.0%) 1242.73 (94.7%)	1015.49 (63.0%) 1564.58 (64.2%)		
ARMA I year, 72 hours storm, average 0.79 mm/h, zone 1 AR&R 1 year, 72 hours storm, average 1.79 mm/h, zone 1	(%1:C) CCOTZC (2004) 9018.8 5133.25 (56.9%)	2521.55 (79.9%)	2611.70 (44.6%)		
PIPE DETAILS Name	Max Q Max V (cu.m/s) (m/s)	(m) HGL (m)	Max D/S HGL (m)	Due to Storm	
CHANNEL DETAILS Name	Max Q Max V (cu.m/s) (m/s)			Due to Storm	
OVERFLOW ROUTE DETAILS Name OF15 OF6108	MaxQU/S MaxQD/S 0.315 0.316	Safe Q 0.315 2.249 0.316 1.844	Max D 0.101 0.107	Max DxV Max V 0.1 0.15	Max Width Max V Due to Storm 3.5 0.98 AR&R 1 year, 2 hours storm, average 17.7 mm/h, Zone 1 4 1.43 AR&R 1 year, 2 hours storm, average 17.7 mm/h, Zone 1
DETENTION BASIN DETAILS Name Basin786	Max WL MaxVol 38.08	Max Q Total 351.4 0.316	Max Q Low Level 0	Max Q High Level 0.316	
CONTINUITY CHECK for AR&R 1 year, 2 hours storm, average 17.7 mm/h, Zone 1 Node		Storage Change	Difference		
NB3 NB5 N6779 Basin736	(cu.m) (cu.m) 788.31 788.31 1075.24 1072.54 1072.54 1077.58 10775.58 10755.58 10755.58 10755.58 10755.58 10755.58 10755.58 10755.58 10755.58 10755.58 10755.58 107555.58 10755.58 10755.58 10755.58 10755.58 10755.58 10755.58 10755.58 107555.58 107555.58 107555.58 107555.58 107555.58 107555.58 107555.58 107555.58 1075555.58 1075555.58 1075555.58 1075555.58 10755555.58 10755555.58 1075555555.58 107555555555555555555555555555555555555	(cu.m) (cu.m) 788.31 0 0 1075.24 0 0 11075.24 0 0 11072.54 5.04	% 0 0 0 6		
Run Log for Dev multiple OSD 6 WORKING run at 03:42:49 on 6/2/2019					

LAKE MUNMORAH REZONING OSD 1 AND 3 - 10 YEAR ARI FLOOD EVENT

DRAINS results prepared from Version 2018.09

UKAINS results prepared from version 2018.09					
PIT / NODE DETAILS Name	Max HGL Max Pond HGL	Max Surface Flow Arriving	Version 8 Max Pond Volume	Min Ove Freeboard (cu.	Overfilow Constraint (cu.m/s)
N6779	37.51	(cu.m/s) 0.342	(cu.m) 12	(E)	
SUB-CATCHMENT DETAILS Name	Max Due to Storm Flow				
Cat5430 Cat54	(cu.m/s) 0.386 AR&R 10 year, 2 hours storm, average 35.1 mn/h, Zone 1 0.649 AR&R 10 year, 20 minutes storm, average 105 mm/h, Zone 1				
Outflow Volumes for Total Catchment (0.91 impervious + 1.69 pervious = 2.60 total ha) Storm	Rainfall	Impervious Runoff			
AR&R 10 year, 5 minutes storm, average 184 mm/h, Zone 1 AR&R 10 year, 10 minutes storm, average 145 mm/h, Zone 1	cu.m 398.67 2.291 (55.9%) 628.33 449.89 (71.6%)	cu.m (Runoff %) 138.92 (99.6%) 218.68 (99.4%)	cu.m (Runoff %) 83.99 (32.4%) 231.21 (56.6%)		
AR&R 10 year, 20 minutes storm, average 105 mm/h, Zone 1 AR&R 10 year, 30 minutes storm, average 83.7 mm/h, Zone 1	910 729.75 (80.2%) 1088.1 901.15 (82.8%)	317.33 (99.6%) 378.33 (99.3%)	412.42 (69.7%) 522.82 (73.9%)		
AR&R 10 year, 1 hour storm, average 34.8 mm/h, Zone 1 AR&R 10 year, 2 hours storm, average 35.1 mm/h, Zone 1	1424.8 1225.57 (86.0%) 1825.16 1593.82 (87.3%)	496.10 (99.5%) 634.05 (99.3%)	729.47 (78.8%) 959.77 (80.9%)		
AR&R 10 year, 6 hours storm, average 17.4 mm/h, Zone 1 AR&R 10 year, 9 hours storm, average 13.6 mm/h, Zone 1 AR&R 10 year, 72 hours storm, average 3.63 mm/h, Zone 1	2714.4 2344.36 (86.4%) 3182.4 2701.88 (84.9%) 6796.4 4980.72 (73.3%)	923.34 (97.2%) 1074.41 (96.5%) 2108.03 (88.6%)	1421.02 (80.5%) 1627.57 (78.7%) 2872.69 (65.0%)		
PIPE DETAILS Name	Max Q Max V (cu.m/s) (m/s)	Max U/S HGL (m)	Max D/S HGL (m)	Due to Storm	
CHANNEL DETAILS Name	Max Q Max V (cu.m/s) (m/s)			Due to Storm	
OVERFLOW ROUTE DETAILS Name 0F15 0F6108	Max QU/S Max QD/S 0.342 0.342	Safe Q 0.342 2.249 0.342 1.844	Max D 9 0.106 4 0.11	Max DxV 0.1	Max Width Max V Due to Storm 3.53 1.01 AR8R 10 year, 30 minutes storm, average 83.7 mm/h, Zone 1 3.5 1.47 AR8R 10 year, 30 minutes storm, average 83.7 mm/h, Zone 1
DETENTION BASIN DETAILS Name Basin786	Max WL MaxVol 38.41	Max Q Total 181.9 0.342	Max Q Low Level 0	Max Q High Level 0.342	
CONTINUITY CHECK for AR&R 10 year, 2 hours storm, average 35.1 mm/h, Zone 1 Node NB3 NB3 NB79	Outflow (cu.m)	Storage Change (cu.m)	Difference % 0 0 0 0-0.4		
Basin786 Run Log for Dev multiple OSD 1 and 3 WORKING run at 14:49:56 on 6/2/2019	851.29 8	850.65 0.65			

LAKE MUNMORAH REZONING OSD 2 AND 4 - 10 YEAR ARI FLOOD EVENT

DRAINS results prepared from Version 2018.09

CONTRACT TO THE PARTY INCLUDED TO THE ACT STOLE SATON					
PIT / NODE DETAILS Name	Max HGL Max Pond HGL	Max Surface Flow Arriving	Version 8 Max Pond Volume	Min Overflow Freeboard (cu.m/s)	low Constraint /s)
N6779	37.65	(cu.m/s) 1.509	(cu.m) 09	(m)	
SUB-CATCHMENT DETAILS Name	Max Due to Storm Flow				
Gat5430 Cat54	(cu.m/s) 1.544 AR&R 10 year, 2 hours storm, average 35.1 mm/h, Zone 1 3.241 AR&R 10 year, 20 minutes storm, average 105 mm/h, Zone 1	_			
Outflow Volumes for Total Catchment (4.55 impervious + 8.45 pervious = 13.0 total ha) Storm	Total Rainfall Total Runoff cu.m cu.m (Runoff %)	Impervious Runoff cu.m (Runoff %)	Pervious Runoff cu.m (Runoff %)		
AR&R 10 year, 5 minutes storm, average 184 mm/h, Zone 1 AR&R 10 year, 10 minutes storm, average 145 mm/h, Zone 1 AR&R 10 vars 70 minutes etorm, average 105 mm/h, Zone 1	1993.33 1093.95 (54.9%) 341.67 229.67 (71.0%) ACCA 3279 47 (72.0%)	673.98 (96.6%) 1073.61 (97.6%) 1567 20 (98.4%)	419.96 (32.4%) 1156.06 (56.6%) 2062 11 (69 7%)		
AR&R 10 year, 30 minutes storm, versege 3.7 mm/h, Zone 1 AR&R 10 year, 30 minutes storm, aversege 8.3.7 mm/h, Zone 1 AR&R 110 year 1 hours torm a versege 54.8 mm/h, Zone 1	5440.55 4485.98 (22.5%) 740.56 4485.98 (52.5%) 710.46 4107 48 (55.7%)	1871.87 (98.3%) 2460 32 (98.7%)	2614.10 (73.9%) 3647 36 (78 8%)		
AR8R 10 year, 5 hours storm, average 5.1 mm/h, 2one 1 AR8R 10 year, 6 hours storm, average 17.4 mm/h, 2one 1 AR8R 10 year, 6 hours storm, average 17.4 mm/h, 2one 1	9125.78 943.55 (87.0%) 11572 11719.81 (86.4%)	3144.72 (97.1%) 4614.72 (97.1%)	4798.81 (80.9%) 7105.09 (80.5%)		
AR&R 10 year, 9 hours storm, average 13.6 mm/h, Zone 1 AR&R 10 year, 72 hours storm, average 3.63 mm/h, Zone 1	15912 13508.25 (84.9%) 33982 24904.13 (73.3%)	5370.37 (96.4%) 10540.54 (88.6%)	8137.88 (78.7%) 14363.59 (65.0%)		
PIPE DETAILS Name	Max Q Max V (cu.m/s) (m/s)	Max U/S HGL (m)	Max D/S HGL (m)	Due to Storm	
CHANNEL DETAILS Name	Max Q Max V (cu.m/s) (m/s)			Due to Storm	
OVERFLOW ROUTE DETAILS Name OF5108 OF6108	Max Q U/S Max Q D/S 1.509 1.509	Safe Q 1.509 1.509 1.844	Max D 49 0.249 44 0.248	Max DxV 0.42 0.49	Max Width Max V Due to Storm 4.24 1.68 AR8R 10 year, 2 hours storm, average 35.1 mm/h, Zone 1 4 2.35 AR8R 10 year, 2 hours storm, average 35.1 mm/h, Zone 1
DETENTION BASIN DETAILS Name	Max WL MaxVol	Max Q Total	Max Q Low Level	Max Q High Level	
Basin786	38.49	1232.3 1.509	0 60	1.509	
CONTINUITY CHECK for AR&R 10 year, 2 hours storm, average 35.1 mm/h, Zone 1 Node	Inflow Outflow (cu.m) (cu.m)	Storage Change (cu.m)	Difference %		
NB3 NB5 N N2779 A 107779	3688.02 4249.53 4249.54 4240.41	3688.02 3688.02 0 4249.53 0 4249.53 0 24249.53 0	0 0 0 -0.2		
basil / oc Run Log for Dev multiple OSD 2 and 4 WORKING run at 14:53:00 on 6/2/2019					

LAKE MUNMORAH REZONING OSD 5 - 10 YEAR ARI FLOOD EVENT

DRAINS results prepared from Version 2018.09

PIT / NODE DETAILS Name	Max HGL Max Pond HGL	face iving		Overflow Constraint (cu.m/s)	
N6779	37.53	(cu.m/s) (cu.m) 0.492	(m)		
SUB-CATCHMENT DETAILS Name	Max Due to Storm Flow				
Cat5430 Cat54	(cu.m/s) 0.544 AR&R 10 year, 2 hours storm, average 35.1 mm/h, Zone 1 0.948 AR&R 10 year, 20 minutes storm, average 105 mm/h, Zone 1				
Outflow Volumes for Total Catchment (1.33 impervious + 2.47 pervious = 3.80 total ha) Storm	Rainfall	off	Pervious Runoff		
AR&R 10 year, 5 minutes storm, average 184 mm/h, Zone 1	cu.m cu.m (Runoff%) 582.67 325.37 (55.8%)	cu.m (Runoff %) cu.m (R 202.61 (99.4%) 122.76	cu.m (Runoff %) 122.76 (32.4%)		
AR&R 10 year, 10 minutes storm, average 145 mm/h, Zone 1 AR&R 11 vear 20 minutes storm average 105 mm/h Zone 1	918.33 657.16 (71.6%) 1330 1066 06 (80 2%)	319.23 (99.3%) 337.92 463 29 (99 5%) 602 77	337.92 (56.6%) 602 77 (69 7%)		
AR&R 10 year, 30 minutes storm, average 83.7 mm/h, Zone 1	1590.3 1316.37 (82.8%)		764.12 (73.9%)		
AR&R 10 year, 1 hour storm, average 54.8 mm/h, Zone 1 AR&R 10 vear. 2 hours storm. average 35.1 mm/h. Zone 1	2082.4 1790.81 (86.0%) 2667.54 2329.08 (87.3%)	724.65 (99.4%) 1066.15 926.35 (99.2%) 1402.73	1066.15 (78.8%) 1402.73 (80.9%)		
AR&R 10 year, 6 hours storm, average 17.4 mm/h, Zone 1	3967.2 3426.55 (86.4%)		2076.90 (80.5%)		
AR&R 10 year, 9 hours storm, average 13.6 mm/h, Zone 1 AR&R 10 year, 72 hours storm, average 3.63 mm/h, Zone 1	4651.2 3949.36 (84.9%) 9933.2 7290.02 (73.4%)	1570.59 (96.5%) 2378.77 3091.44 (88.9%) 4198.55	2378.77 (78.7%) 4198.58 (65.0%)		
PIPE DETAILS Name	Max Q Max V (cu.m/s) (m/s)	Max U/S Max D/S HGL (m) HGL (m)	5 Due to Storm	Ē	
CHANNEL DETAILS Name	Max Q Max V (cu.m/s) (m/s)		Due to Storm	Ē	
OVERFLOW ROUTE DETAILS Name OF15 OF6108	Max Q U/5 Max Q D/S 0.491 0.491 0.492 0.492 0.492 0.492	Safe Q Max D 0.491 2.249 0.492 1.844	Max DxV 0.131 0.15 0.13 0.21	Max Width Max V 3.65 4	Due to Storm 1.15 AR&R 10 year, 30 minutes storm, average 83.7 mm/h, Zone 1 1.64 AR&R 10 year, 30 minutes storm, average 83.7 mm/h, Zone 1
DETENTION BASIN DETAILS Name	Max WL MaxVol	Max Q Max Q Total Iowelevel	Max Q Hich Level		
Basin786	38.41	0.492	0	32	
CONTINUITY CHECK for AR&R 10 year, 2 hours storm, average 35.1 mm/h, Zone 1 Node	Inflow Outflow	Storage Change Difference	ce		
N83 N85 N6779 Basin786	(1015.09 1246.59 1242.61	005.09 0 1246.39 0 1246.39 0 1242.61 1.38	0 0 m 0 9		
Run Log for Dev multiple OSD 5 WORKING run at 14:55:25 on 6/2/2019					

LAKE MUNMORAH REZONING OSD 6 - 10 YEAR ARI FLOOD EVENT

DRAINS results prepared from Version 2018.09

PIT / NODE DETAILS Name	Max HGL Max Pond HGL	Max Surface Flow Arriving	Version 8 Max Pond Volume	board	Overflow Constraint (cu.m/s)	
N6779	37.58	(cu.m/s) 0.6	(cu.m) 0.861	(E)		
SUB-CATCHMENT DETAILS Name	Max Due to Storm Flow					
Cat5430 Cat54	(cu.m/s) 0.928 AR&R 10 year, 2 hours storm, average 35.1 mm/h, Zone 1 1.746 AR&R 10 year, 20 minutes storm, average 105 mm/h, Zone 1	1				
Outflow Volumes for Total Catchment (2.45 impervious + 4.55 pervious = 7.00 total ha) Storm	Rainfall	Impervious Runoff				
AR&R 10 year, 5 minutes storm, average 184 mm/h, Zone 1	cu.m 1073.33 592.82, 825.2%) 1674.57 1505.57.15.2%)	cu.m (Runoff %) 366.69 (97.6%) 581 38 (68 387)	cu.m (Runoff %) 226.14 (32.4%) 223 40 (55.5%)			
Area to year, to minutes scorin, average 145 minuh, cone 1 AR& 10 year, 20 minutes storm, average 105 mm/h, Zone 1	2450 1957.16 (79.9%)	(%2.00) oc.100 846.80 (98.8%)	1110.37 (69.7%)			
AK&R 10 year, 30 minutes storm, average 83. / mm/h, Zone 1 AR&R 10 year, 1 hour storm, average 54.8 mm/h, Zone 1	2929.5 2418.36 (82.6%) 3836 3292.17 (85.8%)	1010.77 (98.6%) 1328.20 (98.9%)	1407.59 (/3.9%) 1963.97 (78.8%)			
AR&R 10 year, 2 hours storm, average 35.1 mm/h, Zone 1 AR&R 10 vear 6 hours storm average 17.4 mm/h, Zone 1	4913.88 4284.64 (87.2%) 7308 6312 13 (86.4%)	1700.66 (98.9%) 2486 26 (97 2%)	2583.98 (80.9%) 3825 87 (80.5%)			
AR&R 10 year, 9 hours storm, average 3.63 mm/h, Zone 1 AR&R 10 year, 72 hours storm, average 3.63 mm/h, Zone 1	8568 7274 80 (84.9%) 18298 13413.34 (73.3%)	2892.88 (96.5%) 5679.17 (88.7%)	4381.92 (78.7%) 7734.18 (65.0%)			
PIPE DETAILS Name		Max U/S	Max D/S	Due to Storm		
	(cu.m/s) (m/s)	HGL (m)	HGL (m)			
CHANNEL DETAILS Name	Max Q Max V (cu.m/s) (m/s)			Due to Storm		
OVERFLOW ROUTE DETAILS						
Name OF15	Max Q U/S Max Q D/S 0.86	Safe Q 0.86 2.3	Max D 2.249 0.18	Max DxV 0.25	Max Width Max V Due to Storm 3.9 1.39 AR&R 10 vear. 2 hours storm. average 35.1 mm/h. Zone 1	e 35.1 mm/h. Zone 1
OF5108	0.861					e 35.1 mm/h, Zone 1
DETENTION BASIN DETAILS						
Name	Max WL MaxVol	Max Q Total	Max Q Iow Level	Max Q High Level		
Basin786	38.39		0.861 0	0.861		
CONTINUITY CHECK for AR&R 10 year, 2 hours storm, average 35.1 mm/h, Zone 1 Node	Inflow Outflow	Storage Change	Difference			
2014		(cu.m) (cu.m)	%			
con 88N		2291.56				
NG779 Basin786	2286.12 2291.5	2291.56 2286.12 5	0 -0.2 5.37 0			
Run Log for Dev multiple OSD 6 WORKING run at 14:57:29 on 6/2/2019						

5
Б
S
8
ŏ
E,
ARI
Å,
ΥË
ŝ
Ä
÷
è
¥
Ξ
5
0
g
ŧ
6
Б
T
ŝ
б
š
ž
Ē
2
Ϋ́
Ě
_

DRAINS results prepared from Version 2018.09

DRAINS results prepared from Version 2018.09					
PIT / NODE DETAILS Name	Max HGL Max Pond HGL	Max Surface Flow Arriving (cri m/s)	Version 8 Max Pond Volume (cu m)	Min C Freeboard (c (m)	Overflow Constraint (cu.m/s)
N6779	37.57	0.747			
SUB-CATCHMENT DETAILS Name	Max Due to Storm Flow rrimr/si				
Cat5430 Cat54					
Outflow Volumes for Total Catchment (0.91 impervious + 1.69 pervious = 2.60 total ha) Storm	Rainfall	Æ	Pervious Runoff		
AR&R 100 year, 5 minutes storm, average 317 mm/h, Zone 1 ABBP 400 voor 10 minutes chorm vivorano 351 mm/k, Zono 1	cu.m cu.m (kunor)%/ 686.83 504.15 (73.4%) 1002-27 003 1602 104 (102.12)	cu.m (Kunott %) 237.38 (98.7%) 277.73 (66. 2%)	си.т (Кипотт %) 266.77 (59.8%) 526.01 (74.4%)		
AR&R 100 year, 20 minutes storm, average 221 minut, 2005 1 AR&R 100 year, 20 minutes storm, average 182 mm/h, Zone 1	1577.33 1393.05 (88.3%)		843.27 (82.2%)		
AR&R 100 year. 30 minutes storm, average 145 mm/h, Zone 1 AR&R 100 year. 1 hour storm. average 94.8 mm/h. Zone 1	1885 1694.08 (89.9%) 2464.8 2262.66 (91.8%)	656.17 (99.5%) 859.48 (99.6%)	1037.91 (84.7%) 1403.18 (87.6%)		
AR&R 100 year, 2 hours storm, average 60 mm/h, 20e 1	3120 2883.36 (92.4%)	~	1796.68 (88.6%)		
Ackin LUVear, pronors sorm, wergege 2-3.4 mm/h., zone 1 Ackin 100 Vear, plours storm, average 22.8 mm/h, Zone 1 AR&R 100 Vear, 72 hours storm, average 6.14 mm/h, Zone 1	5355.33 4844.07 (09.86) 11492 9295.24 (80.9%)	15/2.39 (98.3%) 1827.30 (97.9%) 3719.12 (92.5%)	2617.06 (88.1%) 3016.77 (87.0%) 5576.12 (74.6%)		
PIPE DETAILS Name	V xeV D XEV	Max U/S HGL (m)	Max D/S HGL (m)	Due to Storm	
CHANNEL DETAILS					
Name	Max Ci Max V (cu.m/s) (m/s)			Due to storm	
OVERFLOW ROUTE DETAILS					
Name OF15	Max Q U/S Max Q D/S 0.741	5ate Q 2.249 0.741 2.249	Max D 0.166	Max DxV 0.22	Max Width Max V Due to Storm 3.83 1.32 AR&R 100 year, 20 minutes storm, average 182 mm/h, Zone 1
0F6108			0.166		
DETENTION BASIN DETAILS					
Name	Max WL MaxVol	Max Q Total	Max Q Low Level	Max Q Hiøh Level	
Basin786	38.84	0.747	0	0.747	
CONTINUITY CHECK for AR&R 100 year, 20 minutes storm, average 182 mm/h, Zone 1 Node		e Change	Difference		
N83	(cu.m) (cu.m) 6.	(cu.m) (cu.m) (~		
N85					
NG779 Basin786	742.29 743.11 7	744.82 0 742.29 0.82	-0.3		
Run Log for Dev multiple OSD 1 and 3 WORKING run at 14:48:21 on 6/2/2019					

LAKE MUNMORAH REZONING OSD 2 AND 4 - 100 YEAR ARI FLOOD EVENT

DRAINS results prepared from Version 2018.09

PIT / NODE DETAILS Name	Max HGL Max Pond HGL	face iving	م ۳	Overflow Constraint (cu.m/s)	
N6779	37.75	(cu.m/s) (cu.m) 2.831	(E)		
SUB-CATCHMENT DETAILS Name	Max Due to Storm Flow				
Cat5430 Cat54	(cu.m/s) 2.907 AR&R 100 year, 2 hours storm, average 60 mm/h, Zone 1 5.696 AR&R 100 year, 5 minutes storm, average 317 mm/h, Zone 1				
Outflow Volumes for Total Catchment (4.55 impervious + 8.45 pervious = 13.0 total ha) Storm	Rainfall	off	Pervious Runoff		
AR&R 100 year, 5 minutes storm, average 317 mm/h, Zone 1 AR&R 100 year, 10 minutes storm, average 251 mm/h, Zone 1 AR&R 100 year, 20 minutes storm, average 182 mm/h, Zone 1	cu.m 343.1.7 2500 (72.8%) 5438.3 4498.99 (82.7%) 7886.67 6945.74 (88.1%)		cu.m (runon %) 1333.83 (59.8%) 2630.05 (74.4%) 4216.33 (82.2%)		
AR&R 100 year, 30 minutes storm, average 145 mm/h, Zone 1 AR&R 100 year, 1 hour storm, average 94.8 mm/h, Zone 1 AR&R 100 year, 2 hours storm, average 60 mm/h, Zone 1 AR&R 100 year, 6 hours storm, average 23.8 mm/h, Zone 1 AR&R 100 year, 6 hours storm, average 6.14 mm/h, Zone 1 AR&R 100 year, 72 hours storm, average 6.14 mm/h, Zone 1	9425 8450.17 (89.7%) 12324 11293.47 (91.6%) 15600 1439.1.77 (92.5%) 22854 00944.87 (91.6%) 26676.65 24218.83 (90.8%) 57459.99 46470.58 (80.9%)	3260.63 (98.8%) 5189 4277.55 (99.1%) 7015 5408.29 (99.1%) 8983 7859.58 (98.3%) 1308 9135.07 (97.8%) 1508 9135.07 (97.8%) 2508 18590.02 (92.4%) 2788	5189.54 (84.7%) 8983.44 (84.7%) 13085.24 (88.6%) 13085.24 (88.1%) 15083.76 (87.0%) 27880.56 (74.6%)		
PIPE DETAILS Name	Max Q Max V (cuim/s) (m/s)	Max U/S Max D/S HGL (m) HGL (m)	D/S Due to Storm m)		
CHANNEL DETAILS Name	Max Q Max V (cu.m/s) (m/s)		Due to Storm		
OVERFLOW ROUTE DETAILS Name 0F15 0F6108	Max Q U/S Max Q D/S 2.2.2 2.829 2.831 2.831 2.	Safe Q Max D 2.829 2.249 2.831 1.844	D Max DxV 0.355 0.73 0.355 0.85	Max Width Max V Due to Storm 4.77 2.06 AR&R 100 year, 20 minutes storm, average 182 mm/h, Zone 1 4 2.78 AR&R 100 year, 20 minutes storm, average 182 mm/h, Zone 1	m/h, Zone 1 m/h, Zone 1
DETENTION BASIN DETAILS Name Basin786	Max WL MaxVol 38.96 203	Max Q Max Q Total Low Level 2054.1 2.831	Д Мах Q evel High Level 0 2.831		
CONTINUITY CHECK for AR&R 100 year, 2 hours storm, average 60 mm/h, Zone 1 Node		: Change	ence		
N83 N85 N6779 Basin786	(cu.m) (cu.m) 6900 9005-91 7481.33 7485.48 7485.79 7485.70 7475.70 7475.70 7475.70 7475.70 7475.70 7475.70 7	(cu.m) % 6905.91 0 7481.33 0 7481.33 0 7469.48 16.4	0 0.2 0		
Run Log for Dev multiple OSD 2 and 4 WORKING run at 14:53:43 on 6/2/2019					

The maximum flow in these overflow routes is unsafe: OF6108, OF15

LAKE MUNMORAH REZONING OSD 5 - 100 YEAR ARI FLOOD EVENT

DRAINS results prepared from Version 2018.09

PIT / NODE DETAILS Name	Max HGL Max Pond HGL	face iving	م ۳	Overflow d (cu.m/s)	Constraint
N6779	37.59	(cu.m/s) (cu.m) 0.954	(E)		
SUB-CATCHMENT DETAILS Name	Max Due to Storm Flow				
Cat5430 Cat54	(си.m/s) 1.046. AR&R 100 year, 20 minutes storm, average 182 mm/h, Zone 1 1.668. AR&R 100 year, 5 minutes storm, average 317 mm/h, Zone 1				
Outflow Volumes for Total Catchment (1.33 impervious + 2.47 pervious = 3.80 total ha) Storm	Rainfall	jf	Pervious Runoff		
AR&R 100 year, 5 minutes storm, average 317 mm/h, Zone 1 AR&R 100 year, 10 minutes storm, average 251 mm/h, Zone 1	cu.m cu.m (Runoff %) 1003 83 7365 56 (73.4%) 1589 57 1320 49 (83.1%)	cu.m (Runoff %) cu.m (I 346.67 (98.7%) 389.89 551.70 (99.2%) 768.78	cu.m (Runoff %) 389.89 (59.8%) 768.78 (74.4%)		
Arean Juo year, Ju Timutes Storm, verlage Laz Immin, zone L AR&R 100 year, J an inutes storm, average 145 mm/h, Zone 1 AR&R 100 year, 1 hour storm, average 948 mm/h, Zone 1 AR&R 100 year, 1 hour storm, average 96 mm/h, Zone 1	2755 2475.12 (89.8%) 360.24 32475.12 (89.8%) 360.24 326.50 (31.8%) 4560 4213.88 (32.4%)		1232.47 (02.2%) 1516.95 (84.7%) 2050.80 (87.6%) 2625.93 (88.6%)		
AR&R 100 year, 6 hours storm, average 29.3 mm/h, Zone 1 AR&R 100 year, 9 hours storm, average 22.8 mm/h, Zone 1 AR&R 100 year, 72 hours storm, average 6.14 mm/h, Zone 1	6680.4 6123.13 (91.7%) 7797.79 7079.93 (90.8%) 16796 13595.08 (80.9%)		3824.92 (88.1%) 4409.11 (87.0%) 8149.70 (74.6%)		
PIPE DETAILS Name	Max Q Max V (cu.m/s) (m/s)	Max U/S Max D/S HGL (m) HGL (m)	/S Due to Storm	ш. Б	
CHANNEL DETAILS Name	Max Q Max V (cu.m/s) (m/s)		Due to Storm	E	
OVERFLOW ROUTE DETAILS Name 0F15 0F6108	MaxQU/S MaxQD/S 0.95 0.954	Safe Q Max D 0.95 2.249 0.954 1.844	Max DxV 0.191 0.191	Max Width Max V 0.27 3.96 0.34 4	Max V Due to Storm 1.44 AR8R 100 year, 20 minutes storm, average 182 mm/h, Zone 1 2.05 AR8R 100 year, 20 minutes storm, average 182 mm/h, Zone 1
DETENTION BASIN DETAILS Name Basin786	Max WL MaxVol 38.83 5	Max Q Max Q Total Low Level 571.6 0.954	Max Q rel High Lev	el 0.954	
CONTINUITY CHECK for AR&R 100 year, 20 minutes storm, average 182 mm/h, Zone 1 Node		e Change	nce		
N83 N85 N6779 Basin786	(cu.m) (cu.m) 949.45 94 1088.09 1088.09 108 1083.91 1083.91 108 1085.02 1086.02 108	(cu.m) % 949.45 0 0 1088.09 0 1088.09 0 1088.09 1088.09 1088.09 1083.91 2.11	0 0.4.0 0		
Run Log for Dev multiple OSD 5 WORKING run at 14:54:31 on 6/2/2019					

Flows were safe in all overflow routes.

LAKE MUNMORAH REZONING OSD 6 - 100 YEAR ARI FLOOD EVENT

DRAINS results prepared from Version 2018.09

UKAINS results prepared from Version 2018.09				
PIT / NODE DETAILS Name	Max HGL Max Pond HGL	face iving	Min Overflow Freeboard (cu.m/s)	low Constraint /s)
N6779	37.65	(cu.m/s) (cu.m) 1.541	(E)	
SUB-CATCHMENT DETAILS Name	Max Due to Storm Flow			
Cat5430 Cat54	(cu.m/s) 1.688 AR&R 100 year, 20 minutes storm, average 182 mm/h, Zone 1 3.071 AR&R 100 year, 5 minutes storm, average 317 mm/h, Zone 1			
Outflow Volumes for Total Catchment (2.45 impervious + 4.55 pervious = 7.00 total ha) Storm	Rainfall	ff	off	
AR&R 100 year, 5 minutes storm, average 317 mm/h, Zone 1 AR&R 100 year, 10 minutes storm, average 251 mm/h, Zone 1 AR&R 100 vear, 20 minutes storm, average 182 mm/h, Zone 1	cu.m cu.m (Runoff %) 1849.17 1350.21 (73.0%) 229.83 32.425.79 (82.8%) 2346.47 3747.9 (188.4%)	cu.m (Runoff %) cu.m (Runoff %) 631.99 (97.6%) 718.22 (59.8%) 1009.61 (98.5%) 1416.18 (74.4%) 1417 56 (469.1%) 2770 32 (82.2%)	%) 6) 18()	
Areas too year, so timinues souni, areager so too miny, sone 1 AR&R 100 year, 30 minutes storm, average 145 mm/h, Zone 1 AR&R 100 year, 2 hours storm, average 948 mm/h, Zone 1 AR&R 100 year, 2 hours storm, average 60 mm/h, Zone 1 AR&R 100 year, 6 hours storm, average 29.3 mm/h, Zone 1	42402/ 2542218978/ 2075 452218978/ 6536 6094.25(91.7%) 8400 7756.09(92.3%) 12306 11279.36(91.7%)		88 88 88 88 88 88 88 88 88 88 88 88 88	
AR&R 100 year, 9 hours storm, average 22.8 mm/h, Zone 1 AR&R 100 year, 72 hours storm, average 6.14 mm/h, Zone 1	14364.35 13041.65 (90.8%) 30940 25027.40 (80.9%)	4919.58 (97.9%) 8122.07 (87.0%) 10014.73 (92.5%) 15012.67 (74.6%)	9%) .6%)	
PIPE DETAILS Name	Max Q Max V (cu.m/s) (m/s)	Max U/S Max D/S HGL (m) HGL (m)	Due to Storm	
CHANNEL DETAILS Name	Max Q Max V (cu.m/s) (m/s)		Due to Storm	
OVERFLOW ROUTE DETAILS Name OF15 OF6108	Max QU/S Max QD/S 1.535 1.541	Safe Q Max D 1.535 2.249 1.541 1.844	Max DxV Max 0.252 0.42 0.252 0.5	Max Width Max V Due to Storm 4.26 1.69 AR&R.100 year, 20 minutes storm, average 182 mm/h, Zone 1 4.2 2.36 AR&R.100 year, 20 minutes storm, average 182 mm/h, Zone 1
DETENTION BASIN DETAILS Name Basin786	Max WL MaxVol 38.86	Max Q Max Q Total Low Level 1111.7 1.541	Max Q High Level 0 1.541	
CONTINUITY CHECK for AR&R 100 year, 20 minutes storm, average 182 mm/h, Zone 1 Node		e Change		
N83 N85 N6779 Basin786	(cu.m) (cu.m) 174 1942.33 1956.03 199 1996.03 1996.03 1991.7 2000.58 19	(cu.m) % (cu.m) % 174.23 0 0 11996.03 0 0 1996.03 0 1996.03 1991.7 8.87	0 -0.2 0	
Run Log for Dev multiple OSD 6 WORKING run at 14:57:39 on 6/2/2019				

Flows were safe in all overflow routes.

CATCHMENTS 1 AND 3 ON-SITE DETENTION OUTLET STRUCTURES - LAKE MUNMORAH REZONING

		Total Flow	0.0000	0.0115	0.0520	0.0923	0.1011	0.1027	0.1044	0.1060	0.1076	0.1091	0.1107	0.1127	0.1157	0.1167	0.1181	0.1196	0.1210	0.1224	0.1238	0.1251	0.1265	0.1278	0.1291	0.1305	0.1433	0.1943	0.2279	0.2658	0.3077	0.3134	0.3161	0.3189	0.3215	0.3242	0.3269	0.3295	0.3321	0.3347	0.3372	0.3398
		Level To	37.5	37.52 27 F 4	40.70 77 FC	37.58	37.6	37.62	37.64	37.66	37.68 2	37.7	37.72	37.76 27.76	077.C	37.8	37.82	37.84	37.86	37.88	37.9	37.92	37.94	37.96	37.98	38	38.02	38.04 38.06	38.08	38.1	38.12	38.14	38.16	38.18	38.2	38.22	38.24	38.26	38.28	38.3	38.32	38.34
	38.7 m AHD 4 m	ď	0	0 0			0	0	0	0	0	0 0	0 0			0	0	0	0	0	0	0	0	0	0	0 0	5 0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
ALV	Weir IL Weir Lengt	0																																								
NOTE THAT LEVELS ARE INDICATIVE ONLY	٦٢	Pit flow	0.0000	0.0115	00000	U.00UU N N923	0.1011	0.1027	0.1044	0.1060	0.1076	0.1091	0.1107	01122	0 1152	0.1167	0.1181	0.1196	0.1210	0.1224	0.1238	0.1251	0.1265	0.1278	0.1291	0.1305	0.1433	0.1943 0.1943	0.2279	0.2658	0.3077	0.3134	0.3161	0.3189	0.3215	0.3242	0.3269	0.3295	0.3321	0.3347	0.3372	0.3398
EVELS ARE	TOTAL		0.0000	0.0115	0750.0	0.0973 0.0973	0.1011	0.1027	0.1044	0.1060	0.1076	0.1091	0.1107	0 1127	0 1157	0.1167	0.1181	0.1196	0.1210	0.1224	0.1238	0.1251	0.1265	0.1278	0.1291	0.1305	0.1318	0.1343	0.1356	0.1368	0.1381	0.1393	0.1405	0.1417	0.1429	0.1441	0.1453	0.1464	0.1476	0.1487	0.1499	0.1510
NOTE THAT I		HIGH	0	0 0			0	0	0	0	0	0 0	0 0			0	0	0	0	0	0	0	0	0	0	8.92E-20	0.01154	0.05264 0.059964	0.09232	0.129021	0.169602	0.213723	0.26112	0.31158	0.321547	0.324215	0.326862	0.329487	0.332092	0.334676	0.337241	0.339786
	600 mm 38 m AHD	đ	0	00			0	0	0	0	0	0 0	0 0	0 0		0	0	0	0	0	0	0	0	0	0	8.92E-20	0.01154	0.03264 0.059964	0.09232	0.129021	0.169602	0.213723	0.26112	0.31158	0.364926	0.421012	0.479708	0.540904	0.604501	0.670412	0.738559	0.80887
	HIGH LEVEL Pit Size Pit SL																																									
1	37 m AHD 375 mm	ď	0.207557	0.211668	1012.U	0.273546	0.227368	0.231126	0.234824	0.238465	0.242051	0.245585	0.249069	0.25204 0.255904	0.255954 0.759739	0.262542	0.265803	0.269025	0.272209	0.275356	0.278467	0.281545	0.284588	0.2876	0.29058	0.29353	0.296451 0.2062 <i>1</i>	0.209344 0.302208	0.305046	0.307857	0.310643	0.313405	0.316142	0.318856	0.321547	0.324215	0.326862	0.329487	0.332092	0.334676	0.337241	0.339786
No. Hi = No. Low =	Orifice IL Orifice Size		0.0000	0.0115	07000	0.0973 0.0973	0.1011	0.1027	0.1044	0.1060	0.1076	1001.0	0.1107	77110	0.1157	0.1167	0.1181	0.1196	0.1210	0.1224	0.1238	0.1251	0.1265	0.1278	0.1291	0.1305	0.1318	0.1330 0.1343	0.1356	0.1368	0.1381	0.1393	0.1405	0.1417	0.1429	0.1441	0.1453	0.1464	0.1476	0.1487	0.1499	0.1510
1.7	L 600 mm 37.5 m AHD	ď	0	0.01154	0.05204	0.009964 0.0933	0.129021	0.169602	0.213723	0.26112	0.31158	0.364926	0.421012	0.4/9/08 0 540004	0.604501	0.670412	0.738559	0.80887	0.88128	0.955731	1.032167	1.11054	1.190801	1.272908	1.356819	1.442498	1.529908	C10610.1	1.802197	1.896213	1.991809	2.08896	2.187641	2.287829	2.389501	2.492636	2.597214	2.703215	2.81062	2.91941	3.02957	3.141081
Weir C =	LOW LEVEL Pit Size Pit SL																																									
0.6 37.5 m AHD	37 m AHD 250 mm	ď	0.0922	0.0941	2500.0	9760.0 1990 0	0.1011	0.1027	0.1044	0.1060	0.1076	0.1091 0.1107	0.1107	01122 0127	0.1157 0.1157	0.1167	0.1181	0.1196	0.1210	0.1224	0.1238	0.1251	0.1265	0.1278	0.1291	0.1305	0.1318	0.1330 0.1343	0.1356	0.1368	0.1381	0.1393	0.1405	0.1417	0.1429	0.1441	0.1453	0.1464	0.1476	0.1487	0.1499	0.1510
Orifice C = Basin IL =	Orifice IL Orifice Size		37.5	37.52 37.54	40.70 77 FC	37.58 37.58	37.6	37.62	37.64	37.66	37.68	37.7	37.72	37.76 27 76	37.78	37.8	37.82	37.84	37.86	37.88	37.9	37.92	37.94	37.96	37.98	38	38.02	38.04 38.06	38.08	38.1	38.12	38.14	38.16	38.18	38.2	38.22	38.24	38.26	38.28	38.3	38.32	38.34

38.36 0.3423 38.38 0.3448		38.42 0.3498		38.46 0.3547	38.48 0.3571	38.5 0.3595	38.52 0.3619	38.54 0.3643	38.56 0.3666	38.58 0.3690	38.6 0.3713	38.62 0.3736	38.64 0.3759	38.66 0.3782	38.68 0.3805	38.7 0.3827	38.72 0.4042	38.74 0.4416	38.76 0.4894	38.78 0.5455	38.8 0.6088	38.82 0.6787	38.84 0.7544	38.86 0.8355		38.9 1.0128				38.98 1.4205	39 1.5325					39.1 2.1456	39.12 2.2783	39.14 2.4141	39.16 2.5529	39.18 2.6948	39.2 2.8395	39.22 2.9872	39.24 3.1377		39.28 3.4469	39.3 3.6055
00		0				0	0	0	0	0	0	0	0	0	0	5.4E-19	0.019233	0.0544	0.099339	0.153866	0.215035	0.282671	0.356206	0.4352		0.60821					1.117354		1.348116	1.4688		1.720279	1.8509	1.984668	2.121513	2.261366	2.404163	2.549846	2.698358		3.003661	3.160354
21 0.3423 33 0.3448		55 0.3498	65 0.3522	76 0.3547	87 0.3571	98 0.3595	08 0.3619	19 0.3643	29 0.3666	40 0.3690	50 0.3713	60 0.3736	71 0.3759	81 0.3782	91 0.3805	01 0.3827	11 0.3850	21 0.3872	31 0.3894	41 0.3916	50 0.3938	60 0.3960	70 0.3982	79 0.4003	89 0.4025	98 0.4046					45 0.4151	54 0.4172		72 0.4213		91 0.4254	99 0.4274	08 0.4294	17 0.4314	126 0.4334	135 0.4354	44 0.4374	153 0.4393	161 0.4413	170 0.4432	78 0.4452
0.342312 0.1521 0.34482 0.1533		0.349782 0.1555	0.352237 0.1565	0.354674 0.1576	0.357095 0.1587	0.3595 0.1598	0.361889 0.1608	0.364262 0.1619	0.366619 0.1629	0.368962 0.1640	0.37129 0.1650	0.373603 0.1660	0.375902 0.1671	0.378188 0.1681	0.380459 0.1691	0.382717 0.1701	0.384962 0.1711	0.387193 0.1721	0.389412 0.1731	0.391618 0.1741	0.393812 0.1750	0.395994 0.1760	0.398164 0.1770	0.400322 0.1779		0.404604 0.1798										0.425366 0.1891	0.427387 0.1899	0.429398 0.1908	0.4314 0.1917	0.433393 0.1926	0.435376 0.1935	0.437351 0.1944	0.439316 0.1953		0.443221 0.1970	0.445161 0.1978
0.88128 0.955731	1.032167	1.11054	1.190801	1.272908	1.356819	1.442498	1.529908	1.619015	1.709788	1.802197	1.896213	1.991809	2.08896	2.187641	2.287829	2.389501	2.492636	2.597214	2.703215	2.81062	2.91941	3.02957	3.141081	3.253927	3.368094	3.483565	3.600327	3.718364	3.837665	3.958214	4.08	4.20301	4.327232	4.452654	4.579265	4.707054	4.83601	4.966123	5.097382	5.229777	5.363299	5.497939	5.633687	5.770534	5.908471	6.04749
0.342312 0.34482	0.34731	0.349782	0.352237	0.354674	0.357095	0.3595	0.361889	0.364262	0.366619	0.368962	0.37129	0.373603	0.375902	0.378188	0.380459	0.382717	0.384962	0.387193	0.389412	0.391618	0.393812	0.395994	0.398164	0.400322	0.402469	0.404604	0.406728	0.408841	0.410943	0.413034	0.415115	0.417185	0.419245	0.421295	0.423336	0.425366	0.427387	0.429398	0.4314	0.433393	0.435376	0.437351	0.439316	0.441273	0.443221	0.445161
0.1521 0.1533	0.1544	0.1555	0.1565	0.1576	0.1587	0.1598	0.1608	0.1619	0.1629	0.1640	0.1650	0.1660	0.1671	0.1681	0.1691	0.1701	0.1711	0.1721	0.1731	0.1741	0.1750	0.1760	0.1770	0.1779	0.1789	0.1798	0.1808	0.1817	0.1826	0.1836	0.1845	0.1854	0.1863	0.1872	0.1881	0.1891	0.1899	0.1908	0.1917	0.1926	0.1935	0.1944	0.1953	0.1961	0.1970	0.1978
3.253927 3.368094	3.483565	3.600327	3.718364	3.837665	3.958214	4.08	4.20301	4.327232	4.452654	4.579265	4.707054	4.83601	4.966123	5.097382	5.229777	5.363299	5.497939	5.633687	5.770534	5.908471	6.04749	6.187583	6.328742	6.470957	6.614222	6.75853	6.903871	7.05024	7.197629	7.346031	7.495439	7.645846	7.797246	7.949633	8.102999	8.257339	8.412647	8.568917	8.726142	8.884318	9.043438	9.203496	9.364488	9.526408	9.68925	9.85301
38.36 0.1521 38.38 0.1533		38.42 0.1555	38.44 0.1565	38.46 0.1576	38.48 0.1587	38.5 0.1598	38.52 0.1608	38.54 0.1619	38.56 0.1629	38.58 0.1640	38.6 0.1650	38.62 0.1660	38.64 0.1671		38.68 0.1691	38.7 0.1701	38.72 0.1711	38.74 0.1721	38.76 0.1731	38.78 0.1741	38.8 0.1750	38.82 0.1760	38.84 0.1770	38.86 0.1779		38.9 0.1798				_	39 0.1845					39.1 0.1891	39.12 0.1899	39.14 0.1908	39.16 0.1917	39.18 0.1926	39.2 0.1935	39.22 0.1944	39.24 0.1953		39.28 0.1970	39.3 0.1978

CATCHMENTS 2 AND 4 ON-SITE DETENTION OUTLET STRUCTURES - LAKE MUNMORAH REZONING

			Total Flow	0.0000	0.0490	0.0899	0.1385	0.1935	0.2544	0.3006	0.3052	0.3098	0.3143 0.2100	001C.U	0.3275	0.3318	0.3361	0.3402	0.3444	0.3484	0.3525	0.3564	0.3604	0.3643	0.3681	0.3719	0.3757	CE/C.D	0.3950	0.4329	0.4853	0.5487	0.6215	0.7024	0.7906	0.8856	0.9870	1.0942	1.2070	1.3252	1.4484	1.4944	1.5036
			Level T 37 5	C: /C	37.54	37.56	37.58	37.6	37.62	37.64	37.66	50.15 7 7 7	1.15 CF FC	21.1C	37.76	37.78	37.8	37.82	37.84	37.86	37.88	37.9	37.92	37.94	37.96	37.98	38	20.00	38.06	38.08	38.1	38.12	38.14	38.16	38.18	38.2	38.22	38.24	38.26	38.28	38.3	38.32	38.34
	L 38.65 m AHD	4 m	ď		0 0	0	0	0	0	0	0 0	5 0				0	0	0	0	0	0	0	0	0	0	0	0 0			0	0	0	0	0	0	0	0	0	0	0	0	0	0
NIY	Weir IL	Weir Lengt																																									
NOTE THAT LEVELS ARE INDICATIVE ONLY	_		Pit flow	0.0000	0.0490	0.0899	0.1385	0.1935	0.2544	0.3006	0.3052	0.3098	0.3100	001C.U	0.3275	0.3318	0.3361	0.3402	0.3444	0.3484	0.3525	0.3564	0.3604	0.3643	0.3681	0.3719	0.3757 0.3705	CE/C.D	0.3950	0.4329	0.4853	0.5487	0.6215	0.7024	0.7906	0.8856	0.9870	1.0942	1.2070	1.3252	1.4484	1.4944	1.5036
EVELS ARE	TOTAL		Pii Donoo	00000	0.0490	0.0899	0.1385	0.1935	0.2544	0.3006	0.3052	0.3098	0.3143	00TC-D	0.3275	0.3318	0.3361	0.3402	0.3444	0.3484	0.3525	0.3564	0.3604	0.3643	0.3681	0.3719	0.3757	CE/C.U	0.3868	0.3905	0.3941	0.3976	0.4012	0.4047	0.4081	0.4116	0.4150	0.4184	0.4217	0.4251	0.4284	0.4317	0.4349
IOTE THAT L			HIGH		00	0	0	0	0	0	0 0	- 0				0	0	0	0	0	0	0	0	0 0	0	0	0 0		0.00816	0.042401	0.091232	0.151125	0.22032	0.2977	0.382477	0.474053	0.571957	0.675804	0.78527	0.900082	1.02	1.144816	1.274345
2	L 1200 mm	<mark>38.05</mark> m AHD	ď		0 0	0	0	0	0	0	0 0	5 0				0	0	0	0	0	0	0	0	0	0	0	0 0		0.00816		0.091232	0.151125	0.22032			0.474053			_	0.900082			1.274345
	HIGH LEVEI Pit Size	Pit SL																																									
1 2	36.7 m AHD	<mark>750</mark> mm	Q 1 050166	C1CC301	1.0761	1.088836	1.101424	1.11387	1.126178	1.138353	1.1504	1.162321	1.1/4122 1 10F00F	CU0CO1.1	1.208832	1.220183	1.231429	1.242574	1.253619	1.264568	1.275423	1.286186	1.29686	1.307447	1.317948	1.328367	1.338705	C020201	1.36925	1.379281	1.38924	1.399128	1.408946	1.418697	1.428381	1.438	1.447555	1.457047	1.466478	1.475848	1.48516	1.494413	1.50361
No. Hi = No. Low =	Orifice IL	Orifice Size		0.0000	0.0490	0.0899	0.1385	0.1935	0.2544	0.3006	0.3052	0.3098	0.3160	001C.U	0.3275	0.3318	0.3361	0.3402	0.3444	0.3484	0.3525	0.3564	0.3604	0.3643	0.3681	0.3719	0.3757 0.2705	CE/C.D	0.3868	0.3905	0.3941	0.3976	0.4012	0.4047	0.4081	0.4116	0.4150	0.4184	0.4217	0.4251	0.4284	0.4317	0.4349
1.7	L 900 mm	<mark>37.5</mark> m AHD	ď	0 01721	0.04896	0.089945	0.13848	0.193531	0.254404	0.320585	0.39168	0.46/369	0.54/389	01C1C0.0	0.811356	0.906752	1.005619	1.107838	1.213304	1.32192	1.433596	1.548251	1.66581	1.786201	1.909362	2.035229	2.163747 2.163747	2.234001 7 1967 C	2.564682	2.703295	2.844319	2.987714	3.13344	3.281462	3.431743	3.584252	3.738954	3.895821	4.054822	4.215929	4.379116	4.544354	4.711621
Weir C =	LOW LEVEL Pit Size	Pit SL																																									
0.6 37.5 m AHD	<mark>37</mark> m AHD	300 mm	0 3657	0026.0	0.2761	0.2812	0.2861	0.2910	0.2958	0.3006	0.3052	0.3098	0.3143	001C.U	0.3275	0.3318	0.3361	0.3402	0.3444	0.3484	0.3525	0.3564	0.3604	0.3643	0.3681	0.3719	0.3757 0.270F	CE/C.D	0.3868	0.3905	0.3941	0.3976	0.4012	0.4047	0.4081	0.4116	0.4150	0.4184	0.4217	0.4251	0.4284	0.4317	0.4349
Orifice C = Basin IL =	Orifice IL	Orifice Size	37 F	C. / C	37.54	37.56	37.58	37.6	37.62	37.64	37.66	31.b8 5 5 5	1.15 CF FC	21.1C NT TS	37.76	37.78	37.8	37.82	37.84	37.86	37.88	37.9	37.92	37.94	37.96	37.98	38	20.00	38.06	38.08	38.1	38.12	38.14	38.16	38.18	38.2	38.22	38.24	38.26	38.28	38.3	38.32	38.34

1.5128	1.5218	1.5309	1.5398	1.5488	1.5576	1.5665	1.5752	1.5840	1.5927	1.6013	1.6099	1.6184	1.6269	1.6354	1.6506	1.6875	1.7365	1.7947	1.8606	1.9333	2.0121	2.0965	2.1862	2.2808	2.3800	2.4836	2.5915	2.7034	2.8192	2.9388	3.0620	3.1887	3.3188	3.4522	3.5889	3.7287	3.8717	4.0176	4.1664	4.3182	4.4728	4.6301	4.7902	4.9529	5.1183	5.2862	5.4567
38.36	38.38	38.4	38.42	38.44	38.46	38.48	38.5	38.52	38.54	38.56	38.58	38.6	38.62	38.64	38.66	38.68	38.7	38.72	38.74	38.76	38.78	38.8	38.82	38.84	38.86	38.88	38.9	38.92	38.94	38.96	38.98	39	39.02	39.04	39.06	39.08	39.1	39.12	39.14	39.16	39.18	39.2	39.22	39.24	39.26	39.28	39.3
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0068	0.035334	0.076026	0.125938	0.1836	0.248084	0.318731	0.395044	0.476631	0.56317	0.654392	0.750068	0.85	0.954014	1.061954	1.173685	1.28908	1.408027	1.530423	1.656173	1.785191	1.917395	2.05271	2.191067	2.3324	2.476647	2.623752	2.773658	2.926316	3.081676	3.239692	3.40032	3.563518
																0.0	0.0	0.		0	0	0	ö.	0	0.0	0.		0.0	1.(1.1	1	1.	11	1.(1.	1.5	2	2.3		2.	2.(2.7	2.9	3.(3	ſ	3.1
1.5128	1.5218	1.5309	1.5398	1.5488	1.5576	1.5665	1.5752	1.5840	1.5927	1.6013	1.6099	1.6184	1.6269	1.6354	1.6438	1.6521	1.6605	1.6687	1.6770	1.6852	1.6933	1.7015	1.7095	1.7176	1.7256	1.7336	1.7415	1.7494	1.7573	1.7651	1.7729	1.7806	1.7884	1.7961	1.8037	1.8113	1.8189	1.8265	1.8340	1.8415	1.8490	1.8564	1.8639	1.8712	1.8786	1.8859	1.8932
0.4382	0.4414	0.4446	0.4477	0.4509	0.4540	0.4571	0.4602	0.4632	0.4663	0.4693	0.4723	0.4753	0.4782	0.4812	0.4841	0.4870	0.4899	0.4928	0.4956	0.4984	0.5013	0.5041	0.5069	0.5097	0.5124	0.5152	0.5179	0.5206	0.5233	0.5260	0.5287	0.5313	0.5340	0.5366	0.5393	0.5419	0.5445	0.5471	0.5496	0.5522	0.5547	0.5573	0.5598	0.5623	0.5648	0.5673	0.5698
1.408422	1.521836	1.530868	1.539846	1.548773	1.557649	1.566474	1.57525	1.583977	1.592656	1.601289	1.609875	1.618415	1.626911	1.635362	1.643771	1.652136	1.660459	1.668741	1.676981	1.685182	1.693343	1.701464	1.709547	1.717592	1.7256	1.73357	1.741504	1.749402	1.757265	1.765092	1.772885	1.780644	1.788369	1.796061	1.80372	1.811347	1.818942	1.826505	1.834037	1.841538	1.849009	1.85645	1.863861	1.871242	1.878595	1.885919	1.893215
1	1.	1.	1.	1.	1.	1.	~	1.	1.	1.	i.	1.	1.	1.	1.	1.	Ļ.	1.	Ļ		1.	1.	1.	i.			1.	1.	1.	1.	1.	1.	1.	1.	-	1.	1.	1.	1.	i.	1.	C 1	1.	1.	1.	1.	1.
1.408422	1.546896	1.689632	1.836508	1.987408	2.142229	2.300874	2.463252	2.629281	2.79888	2.971977	3.148502	3.32839	3.511579	3.698011	3.88763	4.080384	4.276222	4.475096	4.676961	4.881774	5.089492	5.300075	5.513486	5.729686	5.94864	6.170314	6.394676	6.621693	6.851334	7.083571	7.318374	7.555715	7.795568	8.037907	8.282705	8.52994	8.779587	9.031624	9.286026	9.542774	9.801845	10.06322	10.32688	10.5928	10.86096	11.13135	11.40395
Ļ	1.	1.	1.	1.	2.	2.	5	2		5	Э	(*)	з.	С	(1)	4.	4.	4.	4.	4.	2	<u></u> .	С	с.	υ)	9.	9.	.9	.9	7.	7.	7.	7.	<u></u>	×.	ω	∞	.6	9.	ъ,	.6	10	10	-	10	11	11
1.51275	1.521836	1.530868	539846	1.548773	1.557649	1.566474	1.57525	1.583977	592656	1.601289	1.609875	1.618415	1.626911	1.635362	1.643771	1.652136	1.660459	1.668741	1.676981	1.685182	1.693343	1.701464	1.709547	1.717592	1.7256	1.73357	1.741504	1.749402	1.757265	1.765092	1.772885	1.780644	1.788369	1.796061	1.80372	1.811347	1.818942	1.826505	1.834037	1.841538	1.849009	1.85645	1.863861	1.871242	1.878595	1.885919	1.893215
-	1.	1.	1.	1.	1.	1.	-	μ.	Ļ		Ļ	Ļ	Ļ	Ļ	Ļ.	Ļ	Ļ	Ļ.	Ĥ	Ļ.	1.	Ĺ.	Ĺ.	÷		-	Ϊ.	1.	1.	Ĺ.	Τ.	Ţ	÷.	1.	-	Ţ.	Ļ.	Ļ	ц.	Ļ	ц.	-	1.	1.	1.	1.	1.
0.4382	0.4414	0.4446	0.4477	0.4509	0.4540	0.4571	0.4602	0.4632	0.4663	0.4693	0.4723	0.4753	0.4782	0.4812	0.4841	0.4870	0.4899	0.4928	0.4956	0.4984	0.5013	0.5041	0.5069	0.5097	0.5124	0.5152	0.5179	0.5206	0.5233	0.5260	0.5287	0.5313	0.5340	0.5366	0.5393	0.5419	0.5445	0.5471	0.5496	0.5522	0.5547	0.5573	0.5598	0.5623	0.5648	0.5673	0.5698
0	U	U	0	0	0	0	0	0	0	0	0	U	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	U	0	0	0	0	0	0	0	U	0	0	0	0	0	0	U	0
4.880891	5.052141	5.225348	5.40049	5.577547	5.756497	5.937321	6.12	6.304515	6.490848	6.678981	6.868898	7.060581	7.254015	7.449184	7.646072	7.844666	8.044949	8.246908	8.45053	8.655801	8.862707	9.071236	9.281375	9.493112	9.706436	9.921334	10.13779	10.35581	10.57536	10.79644	11.01905	11.24316	11.46877	11.69587	11.92445	12.1545	12.38601	12.61897	12.85338	13.08921	13.32648	13.56516	13.80524	14.04673	14.28961	14.53388	14.77951
4.8	5.0	5.2	5.	5.5	5.7	5.93		6.3(6.49	9.9	6.8	7.0(7.2	7.4	2.6	7.8	8.0	8.2	8.	8.6	8.8	0.6	9.28	9.4	9.7(6.6	10.	10.3	10.	10.7	11.(11.	11.	11.(11.9	12	12.3	12.(12.8	13.(13.3	13.1	13.8	14.(14.	14.	14.
0.4382	0.4414	0.4446	0.4477	0.4509	0.4540	0.4571	0.4602	0.4632	0.4663	0.4693	0.4723	0.4753	0.4782	0.4812	0.4841	0.4870	0.4899	0.4928	0.4956	0.4984	0.5013	0.5041	0.5069	0.5097	0.5124	0.5152	0.5179	0.5206	0.5233	0.5260	0.5287	0.5313	0.5340	0.5366	0.5393	0.5419	0.5445	0.5471	0.5496	0.5522	0.5547	0.5573	0.5598	0.5623	0.5648	0.5673	0.5698
38.36 0	38.38 0	38.4 0	38.42 0	38.44 0	38.46 0	38.48 0	38.5 0	38.52 0	38.54 0	38.56 0	38.58 0	38.6 0	38.62 0	38.64 0	38.66 0	38.68 0	38.7 0	38.72 0	38.74 0	38.76 0	38.78 0	38.8 0	38.82 0	38.84 0	38.86 0	38.88 0	38.9 0	38.92 0	38.94 0			39 0					39.1 0	39.12 0	39.14 0	39.16 0	39.18 0	39.2 0		39.24 0			39.3 0

CATCHMENT 5 ON-SITE DETENTION OUTLET STRUCTURES - LAKE MUNMORAH REZONING

			Total Flow	0.0000	0.0326	0.0600	0.0805	0.0819	0.0832	0.0845	0.0858	1 /00.0	0.0897	0.0909	0.0921	0.0933	0.0945	0.0957	0.0968	0.0980	0.0991	0.1002	0.1075	0.1035	0.1046	0.1057	0.1067	0.1078	0.1129	0.1310	0.1564	0.18/4	0.2230	0.2020	0.3578 0.3578	0.4027	0.4556	0.4745	0.4782	0.4819	0.4856	0.4893
			Level To 37 5	C:/C	37.54	37.56	37.58	37.6	37.62	37.64	37.66	00.1C	37.72	37.74	37.76	37.78	37.8	37.82	37.84	37.86	37.88 2-2	9.75 CO FC	37.92 27.04	37.96	37.98	38	38.02	38.04	38.06	38.08	38.1	38.12	38.14 20.17	01.00	30.10 38.7	38.22	38.24	38.26	38.28	38.3	38.32	38.34
	38.7 m AHD		ď		0 0	0	0	0	0	0	0 0		0	0	0	0	0	0	0	0 (0 (0 0			0	0	0	0	0	0	0	0 0		5 0		- C	0	0	0	0	0	0
NLY	Weir IL	Weir Lengt																																								
NOTE THAT LEVELS ARE INDICATIVE ONLY	۹L		Pit flow	0.0115	0.0326	0.0600	0.0805	0.0819	0.0832	0.0845	0.0858	0.088/1	0.0897	0.0909	0.0921	0.0933	0.0945	0.0957	0.0968	0.0980	0.0991	0.1002	0.1014 0.107E	0.1035	0.1046	0.1057	0.1067	0.1078	0.1129	0.1310	0.1564	0.18/4	0.2230	0.202.0	0.3528 0.3528	0.4027	0.4556	0.4745	0.4782	0.4819	0.4856	0.4893
LEVELS ARI	TOTAL			0.0115	0.0326	0.0600	0.0805	0.0819	0.0832	0.0845	0.0858	1 100.0	0.0897	0.0909	0.0921	0.0933	0.0945	0.0957	0.0968	0.0980	0.0991	0.1002	0.1014	0.1035	0.1046	0.1057	0.1067	0.1078	0.1088	0.1098	0.1108	0.1118	0,1128	0011.0	0.1158	0.1167	0.1177	0.1186	0.1196	0.1205	0.1214	0.1223
NOTE THAT			HIGH		0 0	0	0	0	0	0	0 0		0	0	0	0	0	0	0	0 0	0 0	0 0			0	0	0	0	0.00408	0.0212	0.045616	0.0/2563	0.11016	000100	0.191258 0.737077	0.285979	0.337902	0.392635	0.450041	0.481934	0.485627	0.489292
	600 mm	ŝ	ď		0 0	0	0	0	0	0	0 0		0	0	0	0	0	0	0	0 0	0 0				0	0	0	0	0.00408	0.0212	0.045616	0.0/U/Sb63	0.11016	0.104000	0.737077	0.285979	0.337902	0.392635	0.450041	0.51	0.572408	0.637173
	HIGH LEVEL Pit Size	Pit SL																																								
	37 m AHD	450 mm	Q 0 30882	0.304802	0.310608	0.316308	0.321906	0.32741	0.332822	0.338147	0.34339	0.3536A3	0.358659	0.363606	0.368487	0.373304	0.37806	0.382757	0.387396	0.391981	0.396513	0.400993	0.405424	0.414144	0.418436	0.422684	0.42689	0.431055	0.43518	0.439266	0.443315	0.44/32/	0.451303	0.450244	0 463077	0.46687	0.470681	0.474461	0.478212	0.481934	0.485627	0.489292
No. Hi = No. Low =	Orifice IL		LOW	0.0000	0.0326	0.0600	0.0805	0.0819	0.0832	0.0845	0.0858	0.067 I	0.0897	0.0909	0.0921	0.0933	0.0945	0.0957	0.0968	0.0980	0.0991	0.1002	0.1014	0.1035	0.1046	0.1057	0.1067	0.1078	0.1088	0.1098	0.1108	0.1118	0.1128	01110	0.1158 0.1158	0.1167	0.1177	0.1186	0.1196	0.1205	0.1214	0.1223
1.7	600 mm		ď	0 01154	0.03264	0.059964	0.09232	0.129021	0.169602	0.213723	0.26112	OCTICU	0.421012	0.479708	0.540904	0.604501	0.670412	0.738559	0.80887	0.88128	0.955731	1.03216/	1.11054 1.100001	1.77908	1.356819	1.442498	1.529908	1.619015	1.709788	1.802197	1.896213	1.9918U9	2.08896	140/0T.2	2.20/029 7 389501	2.492636	2.597214	2.703215	2.81062	2.91941	3.02957	3.141081
Weir C =	LOW LEVEL Pit Size	Pit SL																																								
0.6 37.5 m AHD	37 m AHD	2	ر 10777	0.0762	0.0777	0.0791	0.0805	0.0819	0.0832	0.0845	0.0858	0.007 I	0.0897	0.0909	0.0921	0.0933	0.0945	0.0957	0.0968	0.0980	0.0991	0.1002	0.1014 0.1075	0.1035	0.1046	0.1057	0.1067	0.1078	0.1088	0.1098	0.1108	0.1118	0.1128	01110	0.1148 0 1158	0.1167	0.1177	0.1186	0.1196	0.1205	0.1214	0.1223
Orifice C = Basin IL =	Orifice IL	ze	37 F	37 57	37.54	37.56	37.58	37.6	37.62	37.64	37.66	00.7C	37.72	37.74	37.76	37.78	37.8	37.82	37.84	37.86	37.88	37.9 20.70	37.92 20.70	37.96	37.98	38	38.02	38.04	38.06	38.08	38.1	38.12	38.14	01.00	01.0c 7 8.5	38.22	38.24	38.26	38.28	38.3	38.32	38.34

0.4929 0.5071 0.5077 0.5077 0.5177 0.51772 0.51772 0.51772 0.52733 0.52455 0.52733 0.52333 0.53347 0.53333 0.53473 0.53473 0.53473 0.53473 0.5763 0.5784 0.57635 0.55763 0.55763 0.55763 0.55763 0.55763 0.55763 0.55763 0.55763 0.55763 0.55763 0.557763 0.55763 0.55763 0.557763 0.557777 0.55777 0.557777 0.557777 0.557777 0.557777 0.557777777777	1.0186 1.1205 1.1205 1.12287 1.4628 1.4628 1.4628 1.4628 1.4628 1.4628 1.4628 1.2881 1.9945 1.2883 2.2839 2.2839 3.27629 3.0992 2.2607 3.30992 3.3731 3.4508 3.6321 3.8171 4.0056 4.1975 4.3928
38.36 38.38 38.44 38.44 38.44 38.46 38.54 38.55 38.55 38.55 38.56 38.66 38.66 38.65 38.76 38.72 38.72 38.72 38.72 38.76 38.76 38.76 38.76 38.78 38.78 38.78 38.78 38.78 38.78	38.84 38.86 38.86 38.92 38.92 38.92 38.92 38.92 39.06 39.06 39.12 39.12 39.12 39.12 39.12 39.26 39.26 39.28
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 7 4 4 5 2 8 3 2 4 9 6 6 3 3 4 5 4 7 8 3 2 9 8 8 3 4 4 4 7 5 8 4 7 4 9 6 9 3 4 5 4 9 6 7 4 7 5 8 4 7 4 4 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4
0 0 0 0 0 0 0 0 0 0.24042 0 0.024042 0 0.024042 0 0.023333 0.0258794 0.1233338	0.445257 0.544 0.549124 0.760263 0.877108 0.999392 0.999392 1.126883 1.256383 1.256383 1.258464 1.951465 1.91106 1.91106 2.150349 2.313624 2.313624 2.313624 2.313624 2.313624 3.372947 3.372947 3.3754576 3.3754576 3.3562058
0.4929 0.4965 0.5001 0.5037 0.5037 0.5107 0.51142 0.51142 0.5245 0.5245 0.5245 0.5347 0.5347 0.5346 0.5479 0.5479 0.5479 0.5479 0.5576 0.5576 0.5576 0.5576 0.5576	0.5734 0.5765 0.5857 0.5887 0.5887 0.5918 0.5918 0.5037 0.6057 0.6057 0.6057 0.6057 0.6125 0.6125 0.6125 0.6125 0.6128 0.6128 0.6228 0.6228 0.6326 0.6326 0.6326
0.1232 0.1241 0.1250 0.1258 0.1258 0.1286 0.1286 0.1303 0.1303 0.1328 0.1337 0.1337 0.1337 0.1337 0.1337 0.1338 0.1328000000000000000000000000000000000000	0.1433 0.1441 0.1449 0.1464 0.1464 0.1472 0.1494 0.1494 0.1509 0.1509 0.1524 0.1553 0.1553 0.1556 0.1556 0.1556 0.1556 0.1558 0.1558 0.1558 0.1558 0.1558 0.1558 0.1558
0.49293 0.496541 0.500126 0.500126 0.510731 0.510731 0.51768 0.51768 0.51768 0.52112 0.52112 0.521305 0.524537 0.531305 0.531305 0.54459 0.54459 0.54459 0.54459 0.547861 0.557558 0.557558 0.557758 0.557753 0.5577232 0.5577232 0.5577232 0.5577232	0.573356 0.576464 0.576464 0.585688 0.585688 0.585688 0.589765 0.597459 0.50747 0.605655 0.605655 0.605665 0.605665 0.605665 0.605665 0.605665 0.612527 0.612527 0.6124085 0.621246 0.621246 0.622615 0.63265 0.632655 0.63265500000000000000000000000000000
0.704211 0.7734816 0.844816 0.937348 0.993704 1.071115 1.50437 1.31464 1.31464 1.331464 1.331464 1.33464 1.33464195 1.3489005 1.574251 1.644195 1.575789 1.574254 1.644195 1.755789 2.2440887 2.237548 2.237548 2.237548 2.237548 2.237548 2.237548 2.2440887 2.237548 2.237548 2.2560038	2.864843 2.97432 3.085157 3.197338 3.310846 3.310846 3.310846 3.425667 3.477857 3.477857 3.5477857 3.659187 4.141353 4.141353 4.241353 4.241353 4.771387 4.900922 5.031609 5.163438 5.163438 5.296398 5.43048 5.296398 5.43048 5.701973
0.49293 0.49253 0.50126 0.50126 0.503686 0.503686 0.510731 0.514217 0.514217 0.51429 0.524537 0.531305 0.531305 0.531305 0.54759 0.5475861 0.5475861 0.5475861 0.557558 0.557558 0.55758	0.573356 0.578464 0.578464 0.582629 0.582688 0.585688 0.58873 0.58773 0.597765 0.603713 0.603713 0.603713 0.603713 0.603665 0.603665 0.615337 0.615337 0.615333 0.615333 0.615437 0.615437 0.615433 0.629785 0.629785 0.638239 0.638239 0.641032
0.1232 0.1251 0.1259 0.1259 0.1268 0.1277 0.1286 0.1286 0.1328 0.1311 0.1328 0.1337 0.1337 0.1337 0.1337 0.1336 0.1337 0.1336 0.1337 0.1336 0.1336 0.1336 0.1337 0.1346 0.1340 0.1342 0.1342 0.1426	0.1433 0.1441 0.1457 0.1457 0.1464 0.1472 0.1502 0.1509 0.1524 0.1524 0.1523 0.1524 0.1553 0.15560 0.15560 0.15560 0.15560 0.15560 0.15560 0.15560000000000000000000000000000000000
3.253927 3.3680347 3.483565 3.600327 3.78364 3.837665 3.958214 4.0801 4.20301 4.452654 4.707054 4.579265 4.707054 4.83601 4.866123 5.097382 5.229777 5.633687 5.633687 5.770534 5.633687 5.770534 5.633687 5.633687 5.770534 5.633687 5.633687 5.633687 5.633687 5.770534 5.633687 5.633687 5.633687 5.770534 5.633687 5.633687 5.770534 5.633687 5.633687 5.770534 5.633687 5.770534 5.633687 5.770534 5.633687 5.635887 5.6387887 5.638877 5.638877 5.638877 5.638877 5.638877 5.638877 5.638877 5.638877 5.638877 5.638877 5.638877 5.6388775555887 5.6388775588775587 5.63887755875587558755875587558755875587558	6.328742 6.470957 6.614222 6.75853 6.5903871 7.197629 7.197629 7.197629 7.97246 7.97246 7.97246 7.97246 7.97246 7.9729633 8.102999 8.412647 8.257339 8.412647 8.257339 8.412647 8.568917 8.568917 8.568917 8.726408 9.203496 9.364488 9.526408 9.526408
0.1232 0.1232 0.1256 0.1256 0.1258 0.1268 0.1268 0.1268 0.1377 0.1313 0.1328 0.1378 0.1378 0.1378 0.1378 0.1378 0.1378 0.1378 0.1378 0.1378 0.1378 0.1378 0.1378 0.1378 0.1410 0.1412	0.1433 0.1441 0.1449 0.1457 0.1454 0.1472 0.1479 0.1479 0.1479 0.1472 0.1472 0.1472 0.1472 0.1472 0.1531 0.1533 0.1557 0.1557 0.1557 0.1557 0.1567000000000000000000000000000000000000
	38.84 0.1, 38.86 0.1, 38.86 0.1, 38.9 0.1, 38.9 0.1, 38.92 0.1, 38.92 0.1, 38.93 0.1, 39.04 0.1, 39.16 0.1, 39.14 0.1, 39.14 0.1, 39.24 0.1, 39.24 0.1, 39.24 0.1, 39.26 0.1, 30.26 0.1, 30.26 0.1, 30

CATCHMENT 6 ON-SITE DETENTION OUTLET STRUCTURES - LAKE MUNMORAH REZONING

			Total Flow	0.0000	0.0115	0.0326	0.0600	0.0923	0.1290	0.1479	0.1503	0.1526	0.1549	0.1572	0.1594	0.1616	0.1638	0.1659	0.1680	0.1701	0.1722	0.1742	0.1762	0.1782	0.1802	0.1821	0.1841	0.1860	0.1879	0.2070	0.2405	0.2834	7666.U	0.4532	0.5212	0.5940	0.6714	0.7532	0.8300	0.8368	0.8435	0.8502	0.8568	0.8633	0.8699
				37.5	37.52	37.54	37.56	37.58	37.6	37.62	37.64	37.66	37.68	37.7	37.72	37.74	37.76	37.78	37.8	37.82	37.84	37.86	37.88	37.9	37.92	37.94	37.96	37.98	38	38.02	38.04	38.05	38.1 38.1	38.12	38.14	38.16	38.18	38.2	38.22	38.24	38.26	38.28	38.3	38.32	38.34
	38.7 m AHD			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0		0 0	0	0	0	0	0	0	0	0	0	0	0
ΓΛ	Weir IL	Weir Lengt																																											
NOTE THAT LEVELS ARE INDICATIVE ONLY	ц		Pit flow	0.0000	0.0115	0.0326	0.0600	0.0923	0.1290	0.1479	0.1503	0.1526	0.1549	0.1572	0.1594	0.1616	0.1638	0.1659	0.1680	0.1701	0.1722	0.1742	0.1762	0.1782	0.1802	0.1821	0.1841	0.1860	0.1879	0.2070	0.2405	0.2834	10000 0	0.4532	0.5212	0.5940	0.6714	0.7532	0.8300	0.8368	0.8435	0.8502	0.8568	0.8633	0.8699
LEVELS ARE	TOTAL			0.0000	0.0115	0.0326	0.0600	0.0923	0.1290	0.1479	0.1503	0.1526	0.1549	0.1572	0.1594	0.1616	0.1638	0.1659	0.1680	0.1701	0.1722	0.1742	0.1762	0.1782	0.1802	0.1821	0.1841	0.1860	0.1879	0.1897	0.1916	0.1934	70470	0.1988	0.2006	0.2023	0.2041	0.2058	0.2075	0.2092	0.2109	0.2125	0.2142	0.2158	0.2175
NOTE THAT			HIGH	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.34E-19	0.01731	0.04896	0.089945	0.13040 0.193531	0.254404	0.320585	0.39168	0.467369	0.547389	0.631518	0.719562	0.811356	0.850155	0.856771	0.863336	0.869852
	000 mm	38 m AHD	,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.34E-19	0.01731	0.04896	0.089945	0.193531	0.254404	0.320585	0.39168	0.467369	0.547389	0.631518	0.719562	0.811356	0.906752	1.005619	1.107838	1.213304
	HIGH LEVEL Pit Size		Ø																											0				ö	0	0	0.	0.	0.	0	0.	0.	1.	н.	τ,
	37 m AHD	600 mm	ď	0.531347	0.54187	0.552192	0.562325	0.572278	0.582061	0.591683	0.60115	0.610471	0.619652	0.628698	0.637616	0.646411	0.655088	0.663652	0.672107	0.680456	0.688704	0.696855	0.704911	0.712877	0.720754	0.728546	0.736256	0.743886	0.751438	0.758915	0.766319	0.//36533	0.788115	0.795247	0.802316	0.809323	0.816271	0.823159	0.82999	0.836766	0.843487	0.850155	0.856771	0.863336	0.869852
No. Hi = No. Low =	Orifice IL		LOW	0.0000	0.0115	0.0326	0.0600	0.0923	0.1290	0.1479	0.1503	0.1526	0.1549	0.1572	0.1594	0.1616	0.1638	0.1659	0.1680	0.1701	0.1722	0.1742	0.1762	0.1782	0.1802	0.1821	0.1841	0.1860	0.1879	0.1897	0.1916	0.1934	0791 0	0.1988	0.2006	0.2023	0.2041	0.2058	0.2075	0.2092	0.2109	0.2125	0.2142	0.2158	0.2175
1.7	600 mm	Ч		0	0.01154	0.03264	0.059964	0.09232	0.129021	0.169602	0.213723	0.26112	0.31158	0.364926	0.421012	0.479708	0.540904	0.604501	0.670412	0.738559	0.80887	0.88128	0.955731	1.032167	1.11054	1.190801	1.272908	1.356819	1.442498	1.529908	1.619015	1./U9/88 1.002107	1 896213	1.991809	2.08896	2.187641	2.287829	2.389501	2.492636	2.597214	2.703215	2.81062	2.91941	3.02957	3.141081
Weir C =	LOW LEVEL Pit Size	Pit SL																																											
0.6 37.5 m AHD	37 m AHD	ст) (0.1328	0.1355	0.1380	0.1406	0.1431	0.1455	0.1479	0.1503	0.1526	0.1549	0.1572	0.1594	0.1616	0.1638	0.1659	0.1680	0.1701	0.1722	0.1742	0.1762	0.1782	0.1802	0.1821	0.1841	0.1860	0.1879	0.1897	0.1916	0.1934	701970 0	0.1988	0.2006	0.2023	0.2041	0.2058	0.2075	0.2092	0.2109	0.2125	0.2142	0.2158	0.2175
Orifice C = Basin IL =	Orifice IL	ze	ď	37.5	37.52	37.54	37.56	37.58	37.6	37.62	37.64	37.66	37.68	37.7	37.72	37.74	37.76	37.78	37.8	37.82	37.84	37.86	37.88	37.9	37.92	37.94	37.96	37.98	38	38.02	38.04	38.06	38.1	38.12	38.14	38.16	38.18	38.2	38.22	38.24	38.26	38.28	38.3	38.32	38.34

0.8763 0.8827 0.8891 0.8954 0.9017 0.9080 0.9142	0.9203 0.9264 0.9325 0.9385 0.9385 0.9445 0.9564 0.9564	0.9682 0.9740 0.9798 1.0095 1.10592 1.1218 1.1249 1.1249 1.2770 1.2671	1.4646 1.5688 1.6794 1.7960 1.9183 2.0460 2.1789 2.3167 2.4594 2.4594 2.56067	2.7584 2.9145 3.0748 3.2393 3.2801 3.5801 3.5801 3.5801 3.5801 4.1198 4.1976 4.4976 4.4976 4.6917 4.6917 5.0901	
38.36 38.38 38.42 38.42 38.42 38.44 38.46 38.46 38.48	38.5 38.52 38.54 38.56 38.56 38.62 38.62 38.62	38.66 38.7 38.7 38.72 38.72 38.74 38.74 38.76 38.76 38.78 38.78 38.82	38.84 38.86 38.88 38.88 38.92 38.92 38.93 38.93 38.93 38.93 38.93 39.33 39.33	39.04 39.06 39.08 39.12 39.14 39.14 39.14 39.28 39.24 39.28 39.28 39.28 39.28	
00000000		0 0 6.75E-19 0.024042 0.068 0.124924 0.122333 0.268794 0.353338	0.445257 0.544 0.649124 0.760263 0.877108 0.993992 1.125883 1.1259378 1.396693 1.538664	1.1.685.145 1.836 1.991106 2.150349 2.313624 2.480835 2.651891 2.826707 3.305204 3.187307 3.3754576 3.3754576 3.3754576 3.3562058 3.754576	
0.8763 0.8827 0.8891 0.8954 0.9017 0.9080 0.9142	0.9203 0.9264 0.9325 0.9385 0.9445 0.9445 0.9564 0.9564	0.9682 0.9740 0.9798 0.9855 0.9912 0.9969 1.0025 1.0082 1.0137	1.0193 1.0248 1.0368 1.0358 1.0358 1.0358 1.0466 1.0466 1.0520 1.0574 1.0680 1.0680	1.0733 1.0785 1.07837 1.07839 1.0839 1.0839 1.0839 1.0953 1.1095 1.1196 1.1196 1.1196 1.1297 1.1396	
0.2191 0.2207 0.2223 0.2239 0.2254 0.2254 0.2285 0.2285	0.2301 0.2316 0.2331 0.2346 0.2346 0.2361 0.2361 0.2391 0.2391	0.2420 0.2435 0.2464 0.2464 0.2464 0.2478 0.2478 0.2492 0.2506 0.2506	0.2548 0.2562 0.2576 0.2589 0.2603 0.2617 0.2630 0.2643 0.2657 0.2657	0.2683 0.2696 0.2709 0.2735 0.2748 0.2748 0.2774 0.2799 0.2812 0.2824 0.2837 0.2837	
0.87632 0.88274 0.889113 0.895442 0.901726 0.901726 0.914164	0.92032 0.926435 0.938546 0.944543 0.954543 0.956424 0.956424	0.96816 0.973975 0.979755 0.985502 0.985502 0.991215 0.996895 1.002543 1.002543 1.00316	1.0193 1.024825 1.024825 1.035786 1.035786 1.046632 1.046632 1.052013 1.052013 1.052694 1.052994	1.073268 1.078516 1.078516 1.088937 1.089379 1.092859 1.109485 1.110485 1.1114563 1.1114563 1.1124649 1.124649 1.124649 1.124649 1.123612	
1.32192 1.433596 1.548251 1.548251 1.6581 1.66581 1.786201 1.909362 2.035229	2.163747 2.294861 2.428522 2.564682 2.564682 2.703295 2.703295 2.844319 3.13344 3.13344	3.281462 3.431743 3.584252 3.738954 3.738954 3.895821 3.895821 4.054822 4.215929 4.215929 4.379116 4.544354	4.711621 4.880891 5.052141 5.25348 5.27547 5.57547 5.75497 5.755497 5.75547 5.75547 5.75547 5.7575757 5.75547 5.75547 5.755475 5.755475 5.755475 5.755475 5.755475 5.755475 5.755475 5.755475 5.755475 5.755475 5.755475 5.7554575 5.755475 5.7575575 5.75757557 5.7575757 5.75757575	0.4908448 6.678981 7.0605839 7.0605831 7.254015 7.449184 7.44666 8.044949 8.044949 8.044949 8.246908 8.246908 8.246908 8.45053 8.450553 8.450553 8.4505553 8.45055555555555555555555555555555555555	
0.87632 0.88274 0.889113 0.895442 0.901726 0.901726 0.914164 0.914164	0.92032 0.926435 0.93251 0.938546 0.944543 0.944543 0.956502 0.956424 0.956231	0.96816 0.973975 0.973555 0.985502 0.985502 0.996895 1.002543 1.002543 1.00216	1.0193 1.024825 1.024825 1.03032 1.03032 1.03032 1.03032 1.044653 1.044653 1.044653 1.06652013 1.052013 1.0657994 1.067994	1.0/3268 1.078516 1.078516 1.083373 1.08431 1.09431 1.109485 1.110485 1.110485 1.110485 1.1104649 1.1124649 1.1124649 1.1124649 1.1134645 1.1134645	
0.2191 0.2207 0.2239 0.2239 0.2254 0.2254 0.2285	0.2301 0.2316 0.23316 0.2346 0.2346 0.2361 0.2376 0.2391 0.2406	0.2420 0.2435 0.2464 0.2464 0.2478 0.2478 0.2478 0.2492 0.2506 0.2520	0.2548 0.2562 0.2576 0.2589 0.2603 0.2617 0.2630 0.2657 0.2657		
3.253927 3.368094 3.483565 3.600327 3.718364 3.718364 3.837665 3.958214 3.958214	4.08 4.20301 4.327232 4.452654 4.452654 4.579265 4.707054 4.83601 4.966123	5.097382 5.229777 5.363299 5.497939 5.497939 5.633687 5.633687 5.70534 5.908471 6.04749 6.187583	6.328742 6.470957 6.614222 6.514223 6.903871 7.05024 7.197629 7.345631 7.495436 7.495846	7.797246 7.949633 8.257339 8.257339 8.257339 8.257339 8.257339 8.257339 8.252333 9.043438 9.033496 9.203496 9.364488 9.526408 9.526408 9.526408	
		0.2420 0.2435 0.2449 0.2464 0.2464 0.2492 0.2492 0.2506 0.2506 0.25506 0.25534			
38.36 38.38 38.42 38.42 38.44 38.44 38.46 38.48 38.48	38.52 38.52 38.55 38.55 38.55 38.55 38.58 38.62 38.62 38.64	38.66 38.68 38.72 38.72 38.74 38.74 38.76 38.76 38.78 38.78 38.82	38.86 38.86 38.92 38.92 38.92 38.94 38.95 38.96 38.96 38.98 39.02 39.02	39.04 39.06 39.08 39.13 39.13 39.14 39.14 39.13 39.28 39.28 39.22 39.22 39.22 39.28 39.28 39.28 39.28	

APPENDIX C

C. MUSIC Model Set Up and Outputs

-

music@link

MUSIC-link Report

Project Details		Company Deta	ails
Project:	Lake Munmorah Rezoning	Company:	Cubo Consulting
Report Export Date:	6/02/2019	Contact:	Matthew Brown
Catchment Name:	MUSIC 20190206_new	Address:	Suite 6, 220 The Entrance Road, Erina
Catchment Area:	20 <u>.9</u> ha	Phone:	02 4326 0990
Impervious Area*:	70.35%	Email:	Matthew.Brown@cubo.net.au
Rainfall Station:	66062 SYDNEY		
Modelling Time-step:	6 Minutes		
Modelling Period:	1/01/1974 - 31/12/1993 11:54:00 PM		
Mean Annual Rainfall:	1297mm		
Evapotranspiration:	1261mm		
MUSIC Version:	6.3.0		
MUSIC-link data Version:	6,31		
Study Area:	Upland		
Scenario:	Central Coast Development		

* takes into account area from all source nodes that link to the chosen reporting node, excluding Import Data Nodes

Treatment Train Effectiveness		Treatment Nodes		Source Nodes	
Node: Receiving Node	Reduction	Node Type	Number	Node Type	Number
Flow	11%	Rain Water Tank Node	6	Urban Source Node	6
TSS	81.9%	Bio Retention Node	6		
TP	52.3%	Generic Node	6		
TN	45.3%				
GP	100%				

Comments

The proposed treatment train achieves Central Coast Council's pollutant reduction targets.

music@link

Node Type	Node Name	Parameter	Min	Max	Actu
Bio	Bioretention - Cat 1	Exfiltration Rate (mm/hr)	0	0	0
Bio	Bioretention - Cat 1	Extended detention depth (m)	0.1	0.3	0.3
Bio	Bioretention - Cat 1	Filter depth (m)	0.5	1	0.6
Зіо	Bioretention - Cat 1	Orthophosphate Content in Filter (mg/kg)	40	50	50
Bio	Bioretention - Cat 1	PET Scaling Factor	2.1	2.1	2.1
Bio	Bioretention - Cat 1	Saturated Hydraulic Conductivity (mm/hr)	100	180	100
Bio	Bioretention - Cat 1	Total Nitrogen Content in Filter (mg/kg)	750	950	800
Bio	Bioretention - Cat 2	Exfiltration Rate (mm/hr)	0	0	0
Bio	Bioretention - Cat 2	Extended detention depth (m)	0.1	0.3	0.3
Bio	Bioretention - Cat 2	Filter depth (m)	0.5	1	0.6
Bio	Bioretention - Cat 2	Orthophosphate Content in Filter (mg/kg)	40	50	50
Bio	Bioretention - Cat 2	PET Scaling Factor	2.1	2.1	2.1
Bio	Bioretention - Cat 2	Saturated Hydraulic Conductivity (mm/hr)	100	180	100
Bio	Bioretention - Cat 2	Total Nitrogen Content in Filter (mg/kg)	750	950	800
Віо	Bioretention - Cat 3	Exfiltration Rate (mm/hr)	0	0	0
Віо	Bioretention - Cat 3	Extended detention depth (m)	0.1	0.3	0.3
Зіо	Bioretention - Cat 3	Filter depth (m)	0.5	1	0.6
Зіо	Bioretention - Cat 3	Orthophosphate Content in Filter (mg/kg)	40	50	50
Віо	Bioretention - Cat 3	PET Scaling Factor	2.1	2.1	2.1
Bio	Bioretention - Cat 3	Saturated Hydraulic Conductivity (mm/hr)	100	180	100
Зіо	Bioretention - Cat 3	Total Nitrogen Content in Filter (mg/kg)	750	950	800
Зіо	Bioretention - Cat 4	Exfiltration Rate (mm/hr)	0	0	0
Зіо	Bioretention - Cat 4	Extended detention depth (m)	0.1	0.3	0.3
Зіо	Bioretention - Cat 4	Filter depth (m)	0.5	1	0.6
Зіо	Bioretention - Cat 4	Orthophosphate Content in Filter (mg/kg)	40	50	50
Віо	Bioretention - Cat 4	PET Scaling Factor	2.1	2.1	2.1
Bio	Bioretention - Cat 4	Saturated Hydraulic Conductivity (mm/hr)	100	180	100
Bio	Bioretention - Cat 4	Total Nitrogen Content in Filter (mg/kg)	750	950	800
Bio	Bioretention - Cat 5	Exfiltration Rate (mm/hr)	0	0	0
Bio	Bioretention - Cat 5	Extended detention depth (m)	0.1	0.3	0.3
Bio	Bioretention - Cat 5	Filter depth (m)	0.5	1	0.6
Bio	Bioretention - Cat 5	Orthophosphate Content in Filter (mg/kg)	40	50	50
Віо	Bioretention - Cat 5	PET Scaling Factor	2.1	2.1	2.1
Віо	Bioretention - Cat 5	Saturated Hydraulic Conductivity (mm/hr)	100	180	100
Віо	Bioretention - Cat 5	Total Nitrogen Content in Filter (mg/kg)	750	950	800
Віо	Bioretention - Cat 6	Exfiltration Rate (mm/hr)	0	0	0
Bio	Bioretention - Cat 6	Extended detention depth (m)	0.1	0.3	0.3
Bio	Bioretention - Cat 6	Filter depth (m)	0.5	1	0.6
Bio	Bioretention - Cat 6	Orthophosphate Content in Filter (mg/kg)	40	50	50
Bio	Bioretention - Cat 6	PET Scaling Factor	2.1	2.1	2.1

Only certain parameters are reported when they pass validation

musicølink

Node Type	Node Name	Parameter	Min	Max	Actua
Bio	Bioretention - Cat 6	Saturated Hydraulic Conductivity (mm/hr)	100	180	100
Bio	Bioretention - Cat 6	Total Nitrogen Content in Filter (mg/kg)	750	950	800
Receiving	Receiving Node	% Load Reduction	None	None	11
Receiving	Receiving Node	GP % Load Reduction	90	None	100
Receiving	Receiving Node	TN % Load Reduction	45	None	45.3
Receiving	Receiving Node	TP % Load Reduction	45	None	52.3
Receiving	Receiving Node	TSS % Load Reduction	80	None	81.9
Urban	Catchment 1	Baseflow Total Nitrogen Mean (log mg/L)	0.11	0.11	0.11
Urban	Catchment 1	Baseflow Total Phosphorus Mean (log mg/L)	-0.85	-0.85	-0.85
Urban	Catchment 1	Baseflow Total Suspended Solids Mean (log mg/L)	1.2	1.2	1.2
Urban	Catchment 1	Stormflow Total Nitrogen Mean (log mg/L)	0.3	0.3	0.3
Urban	Catchment 1	Stormflow Total Phosphorus Mean (log mg/L)	-0.6	-0.6	-0.6
Urban	Catchment 1	Stormflow Total Suspended Solids Mean (log mg/L)	2.15	2.15	2.15
Urban	Catchment 2	Baseflow Total Nitrogen Mean (log mg/L)	0.11	0.11	0.11
Urban	Catchment 2	Baseflow Total Phosphorus Mean (log mg/L)	-0.85	-0.85	-0.85
Urban	Catchment 2	Baseflow Total Suspended Solids Mean (log mg/L)	1.2	1.2	1.2
Urban	Catchment 2	Stormflow Total Nitrogen Mean (log mg/L)	0.3	0.3	0.3
Urban	Catchment 2	Stormflow Total Phosphorus Mean (log mg/L)	-0.6	-0.6	-0.6
Urban	Catchment 2	Stormflow Total Suspended Solids Mean (log mg/L)	2.15	2,15	2,15
Urban	Catchment 3	Baseflow Total Nitrogen Mean (log mg/L)	0,11	0.11	0,11
Urban	Catchment 3	Baseflow Total Phosphorus Mean (log mg/L)	-0.85	-0.85	-0.85
Urban	Catchment 3	Baseflow Total Suspended Solids Mean (log mg/L)	1.2	1.2	1.2
Urban	Catchment 3	Stormflow Total Nitrogen Mean (log mg/L)	0.3	0.3	0.3
Urban	Catchment 3	Stormflow Total Phosphorus Mean (log mg/L)	-0.6	-0.6	-0.6
Urban	Catchment 3	Stormflow Total Suspended Solids Mean (log mg/L)	2.15	2.15	2.15
Urban	Catchment 4	Baseflow Total Nitrogen Mean (log mg/L)	0.11	0.11	0.11
Urban	Catchment 4	Baseflow Total Phosphorus Mean (log mg/L)	-0.85	-0.85	-0.85
Urban	Catchment 4	Baseflow Total Suspended Solids Mean (log mg/L)	1.2	1.2	1.2
Urban	Catchment 4	Stormflow Total Nitrogen Mean (log mg/L)	0.3	0.3	0.3
Urban	Catchment 4	Stormflow Total Phosphorus Mean (log mg/L)	-0.6	-0.6	-0.6
Urban	Catchment 4	Stormflow Total Suspended Solids Mean (log mg/L)	2.15	2.15	2.15
Urban	Catchment 5	Baseflow Total Nitrogen Mean (log mg/L)	0.11	0.11	0.11
Urban	Catchment 5	Baseflow Total Phosphorus Mean (log mg/L)	-0.85	-0.85	-0.85
Urban	Catchment 5	Baseflow Total Suspended Solids Mean (log mg/L)	1.2	1.2	1.2
Urban	Catchment 5	Stormflow Total Nitrogen Mean (log mg/L)	0.3	0.3	0.3
Urban	Catchment 5	Stormflow Total Phosphorus Mean (log mg/L)	-0.6	-0.6	-0.6
Urban	Catchment 5	Stormflow Total Suspended Solids Mean (log mg/L)	2.15	2.15	2.15
Urban	Catchment 6	Baseflow Total Nitrogen Mean (log mg/L)	0.11	0.11	0.11
Urban	Catchment 6	Baseflow Total Phosphorus Mean (log mg/L)	-0.85	-0.85	-0.85
Urban	Catchment 6	Baseflow Total Suspended Solids Mean (log mg/L)	1.2	1.2	1.2

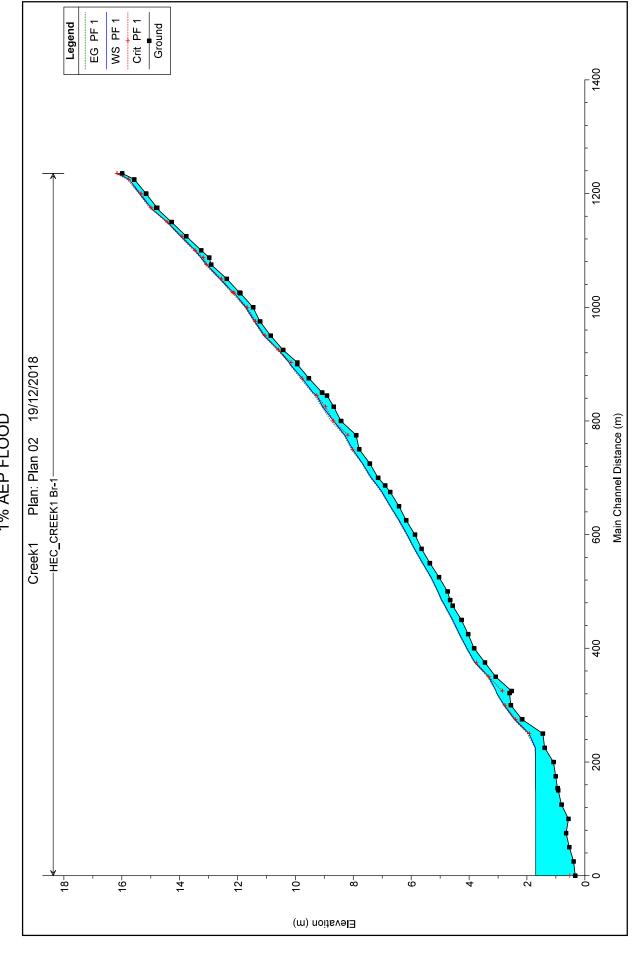
Only certain parameters are reported when they pass validation

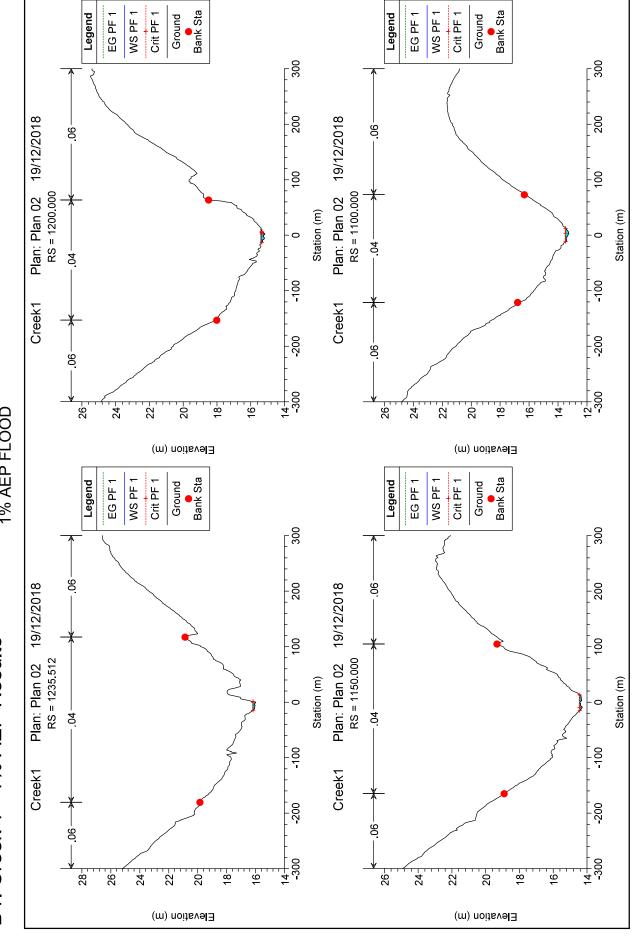
music@link

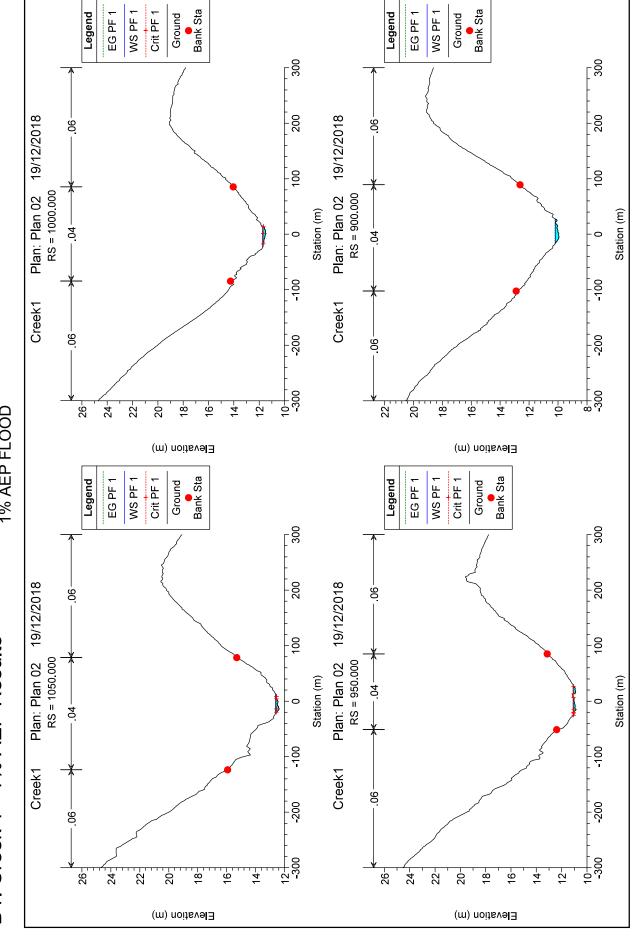
Node Type	Node Name	Parameter	Min	Max	Actual
Urban	Catchment 6	Stormflow Total Nitrogen Mean (log mg/L)	0.3	0.3	0.3
Urban	Catchment 6	Stormflow Total Phosphorus Mean (log mg/L)	-0.6	-0.6	-0.6
Urban	Catchment 6	Stormflow Total Suspended Solids Mean (log mg/L)	2.15	2.15	2.15

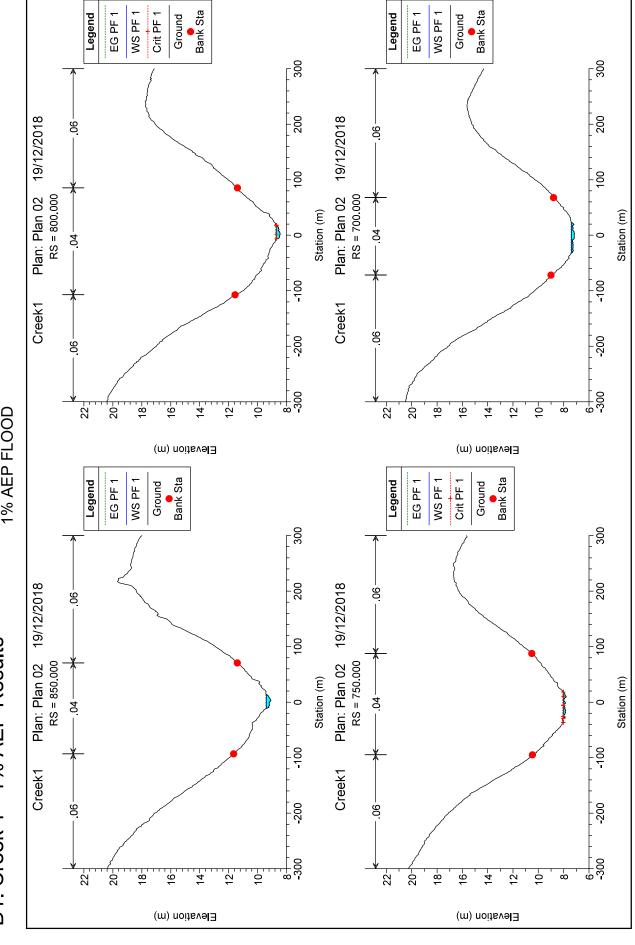
Only certain parameters are reported when they pass validation

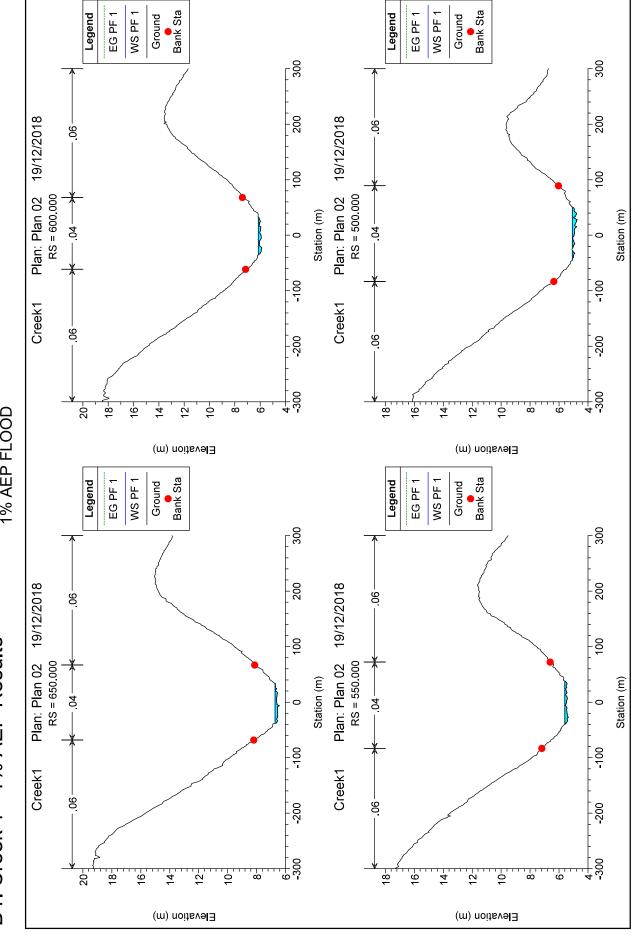
music@link

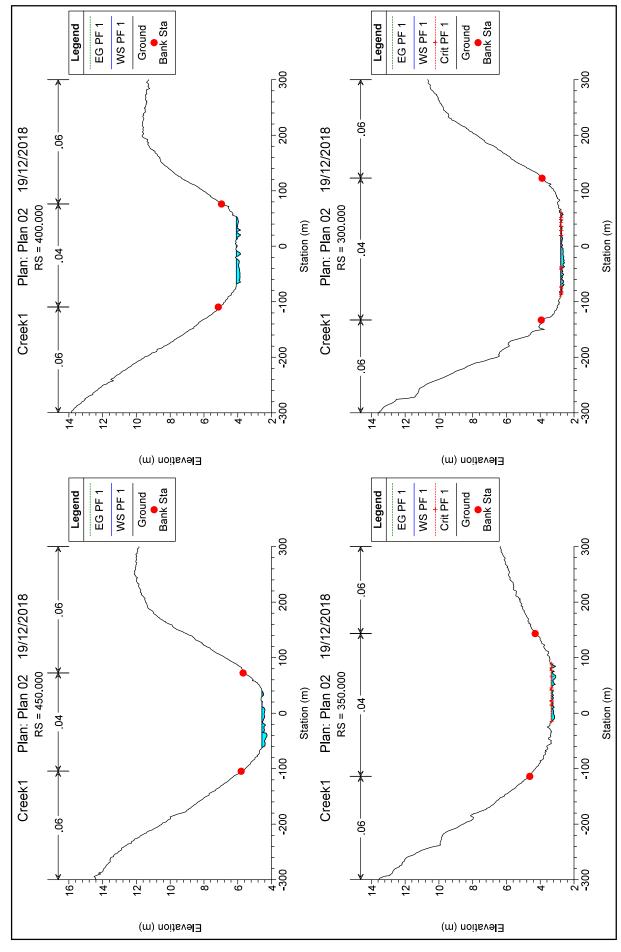

NOTE: A successful self-validation check of your model does not constitute an approved model by Central Coast Council MUSIC-*link* now in MUSIC by eWater – leading software for modelling stormwater solutions

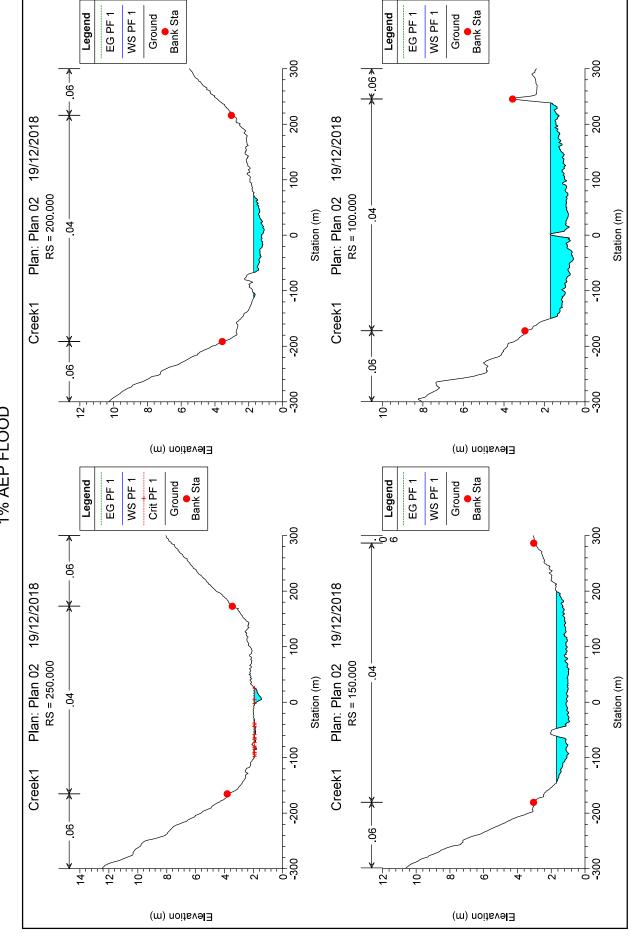

APPENDIX D

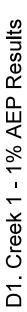

D. HEC-RAS 1-D Model Outputs

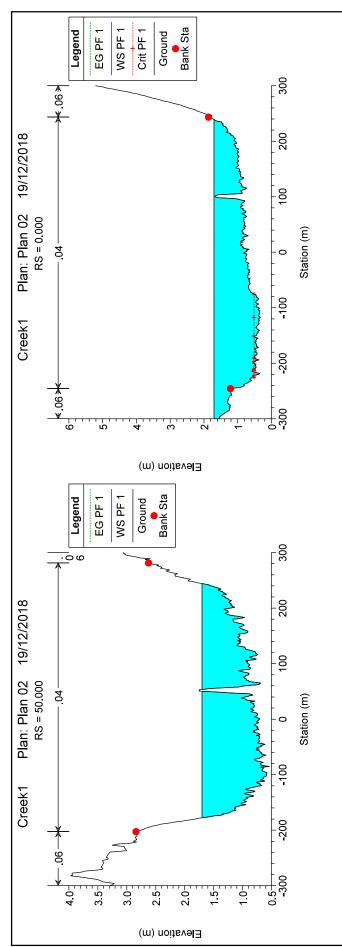

(Refer drawing CI-020 for chainages through the proposed rezoning site)

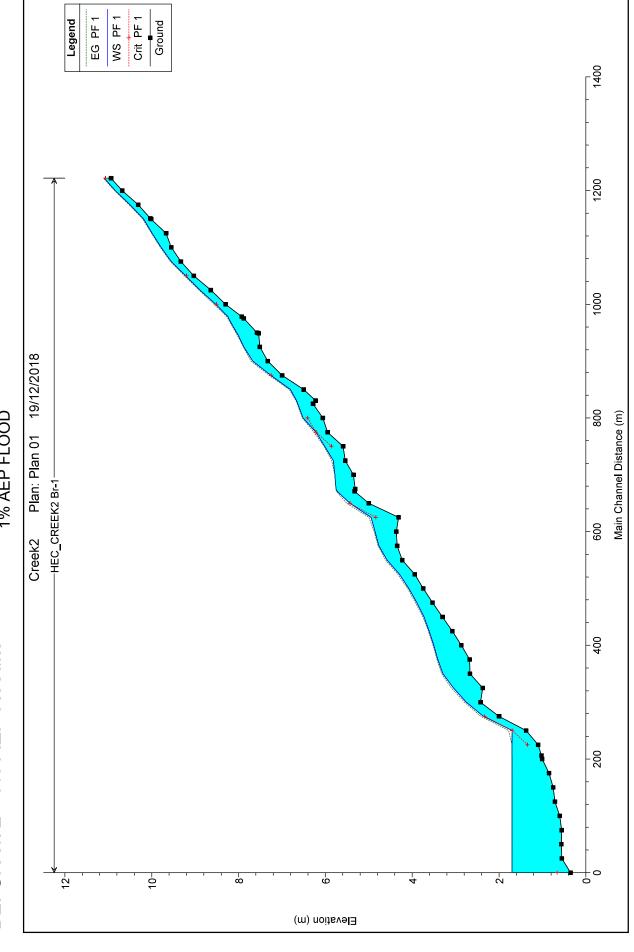

D1. Creek 1 – 1% AEP Results	page 54
D2. Creek 2 – 1% AEP Results	page 62
D3. Creek 3 – 1% AEP Results	page 70
D4. Creek 3 – Post Development 1% AEP Results	page 76

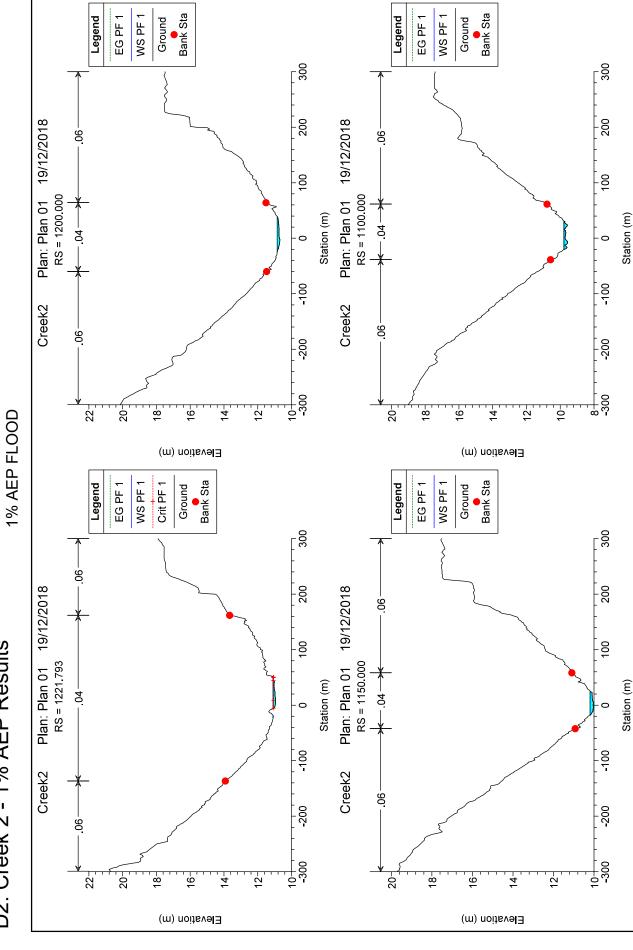


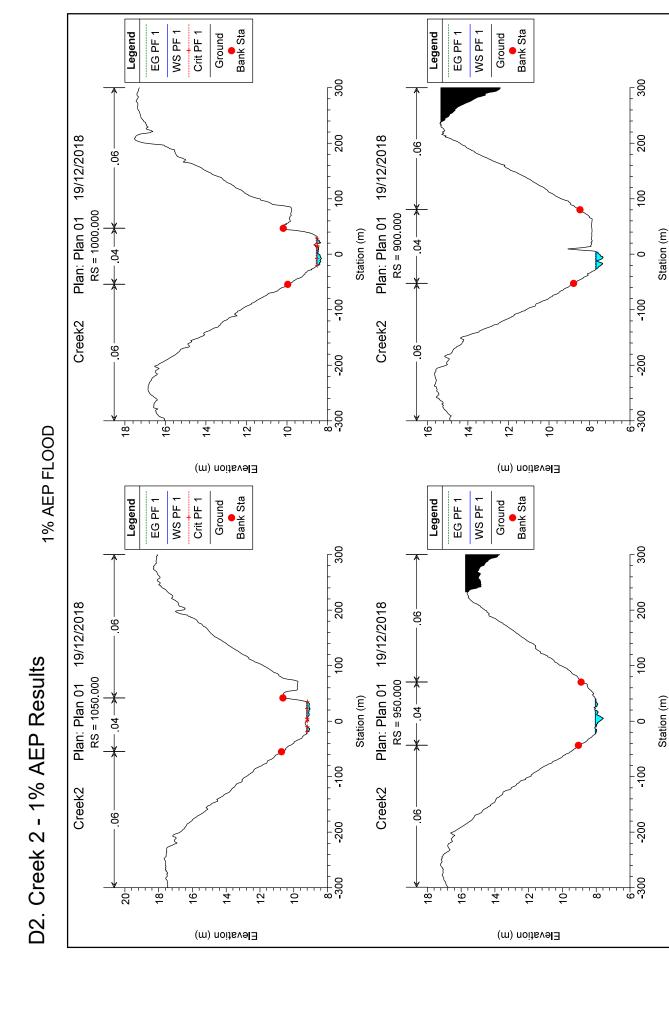


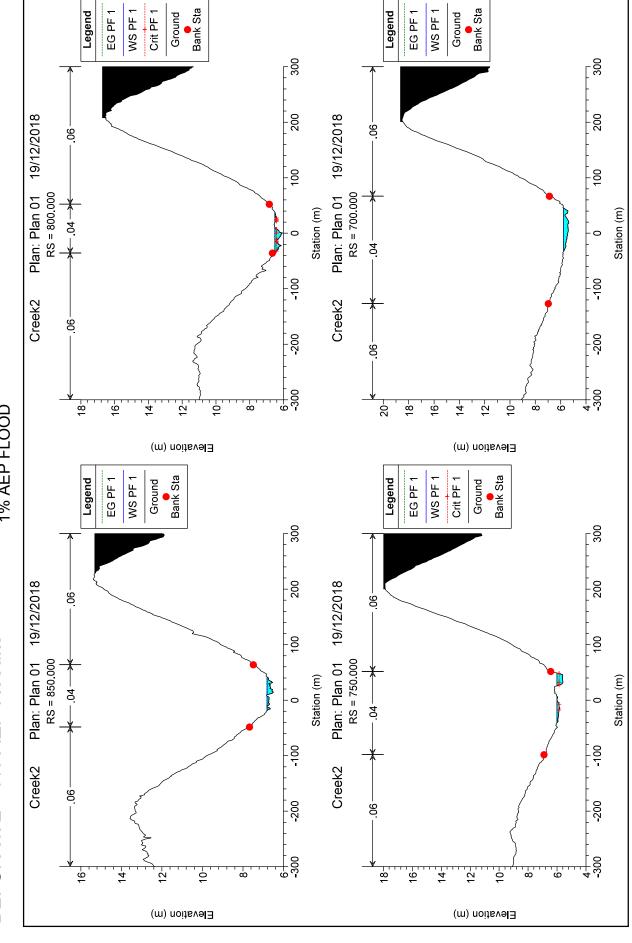


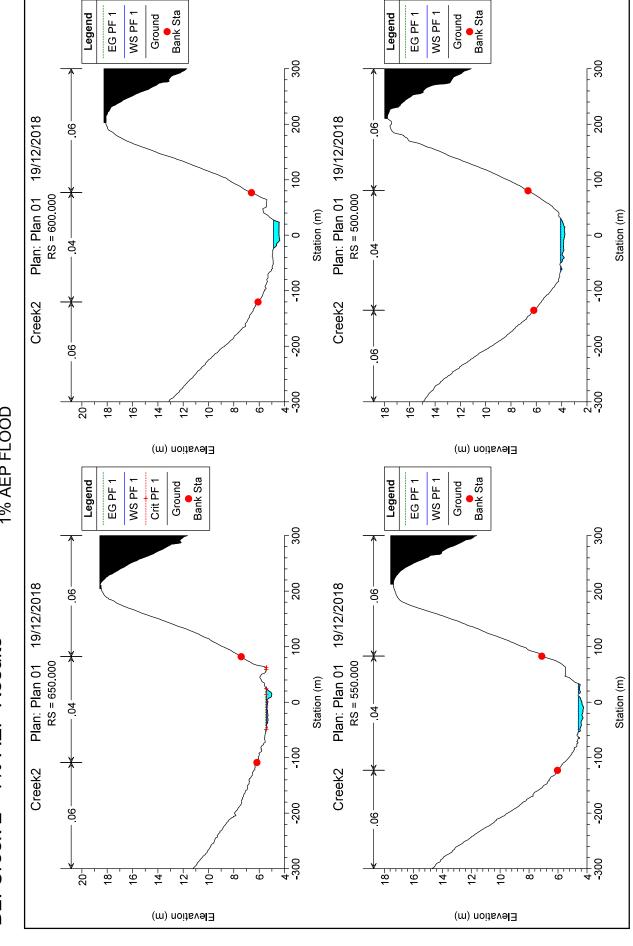


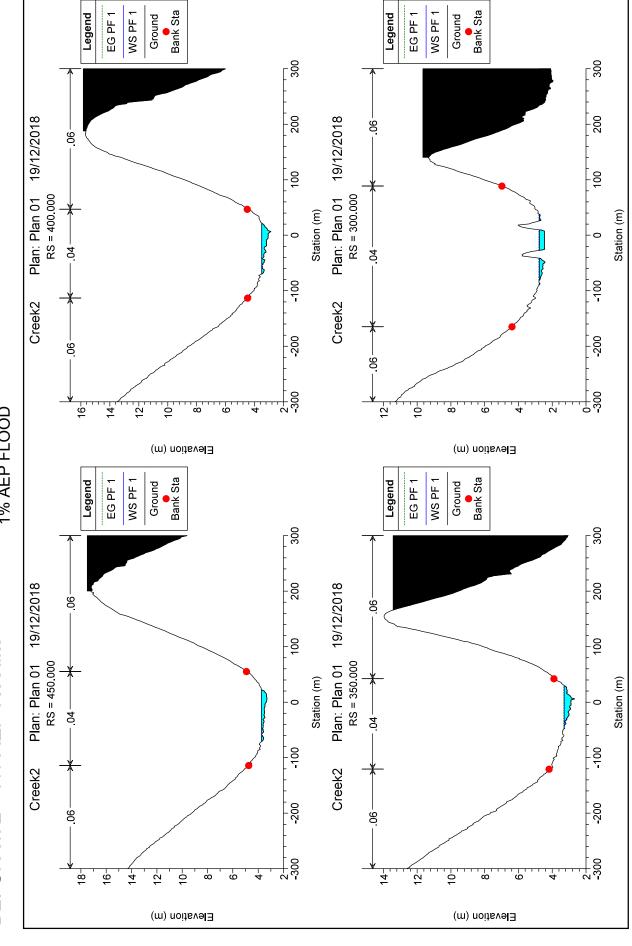


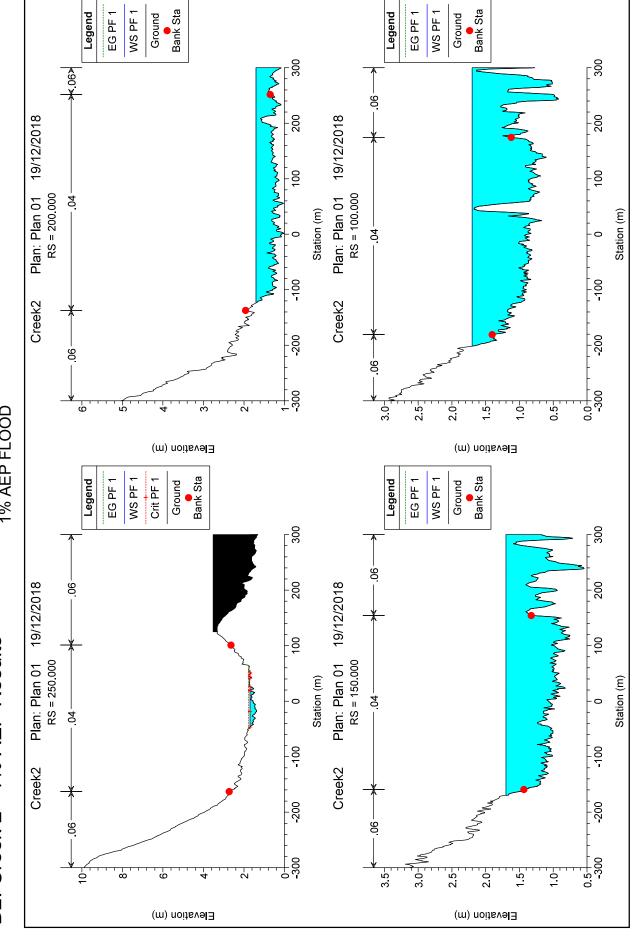


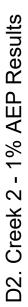


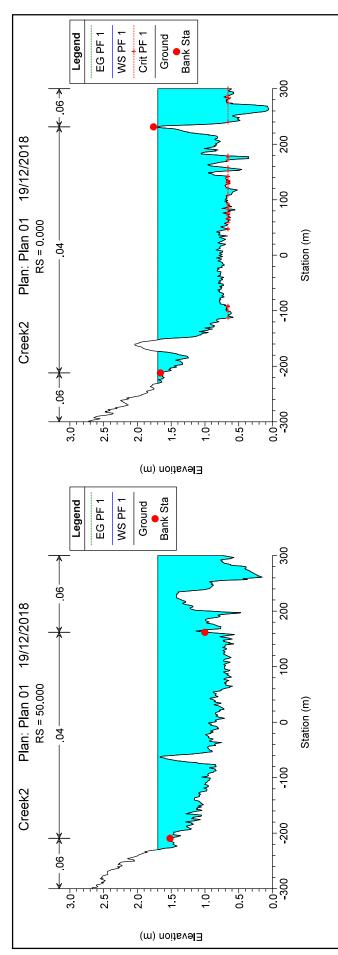


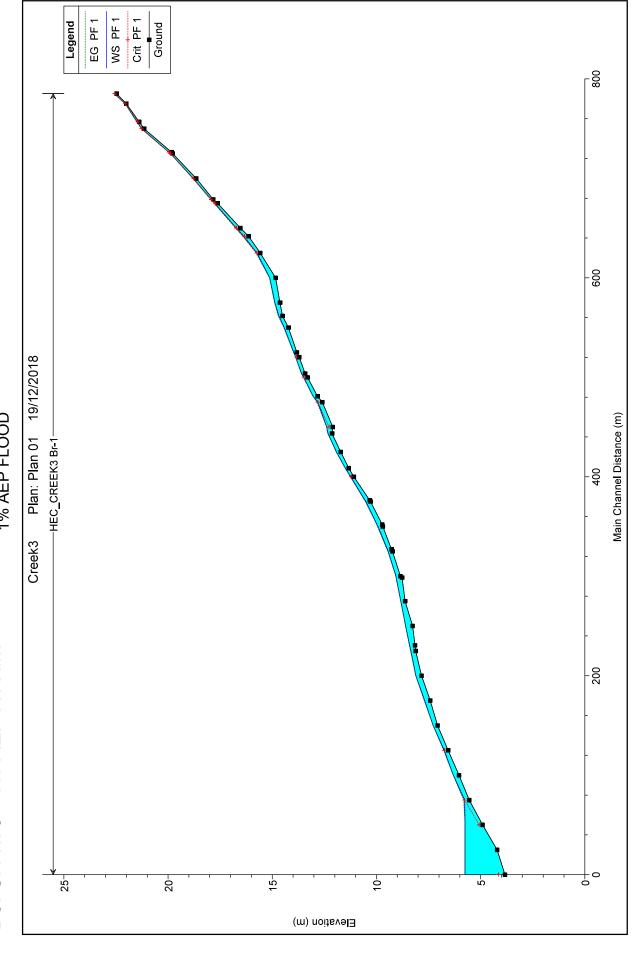


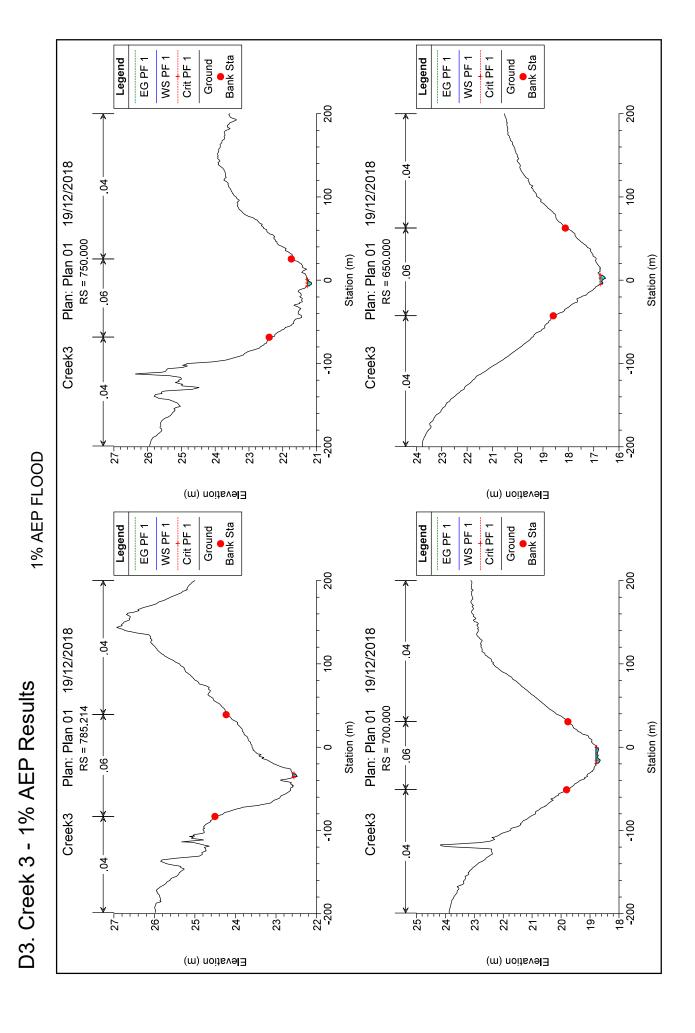


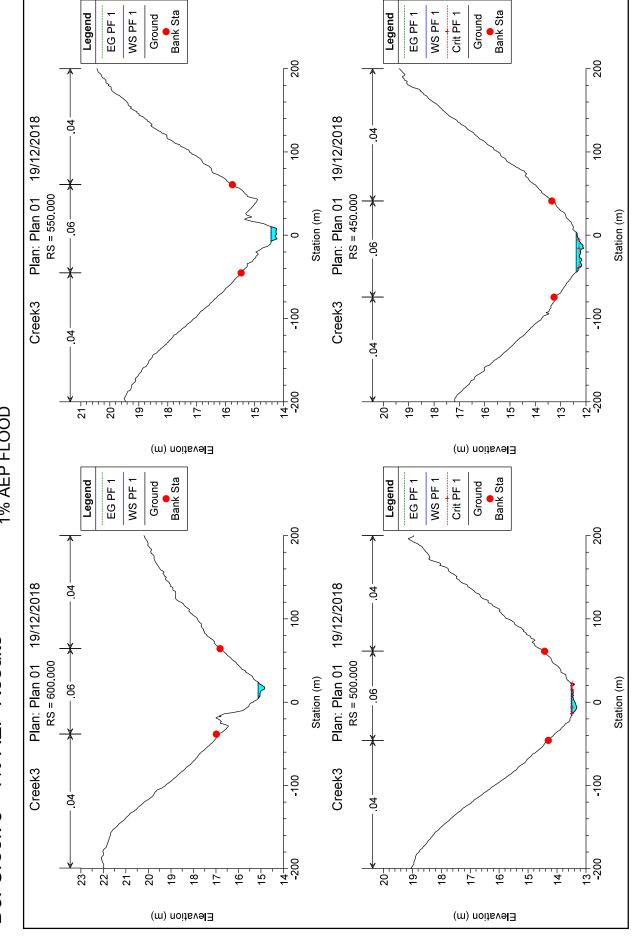


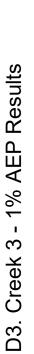


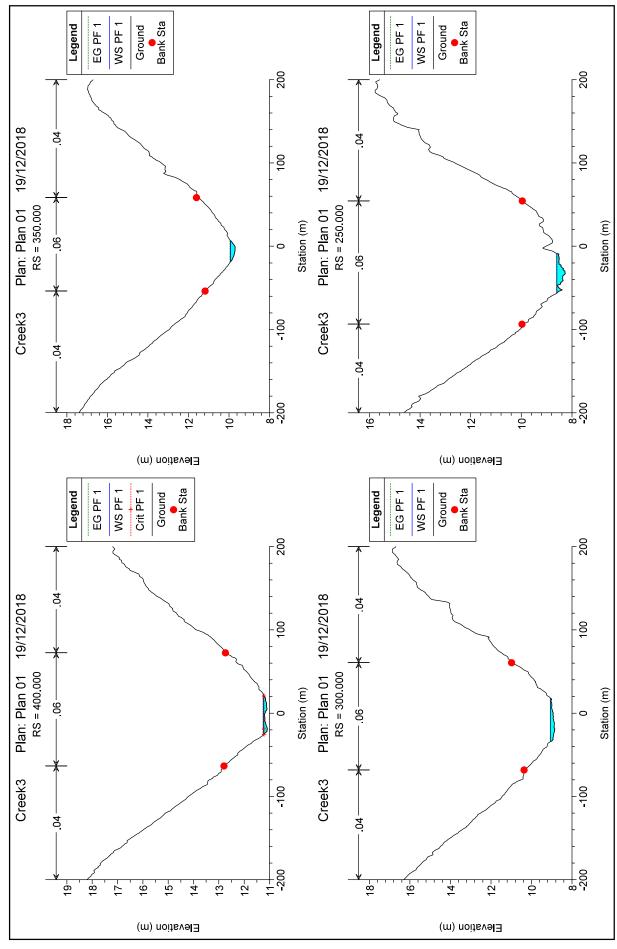


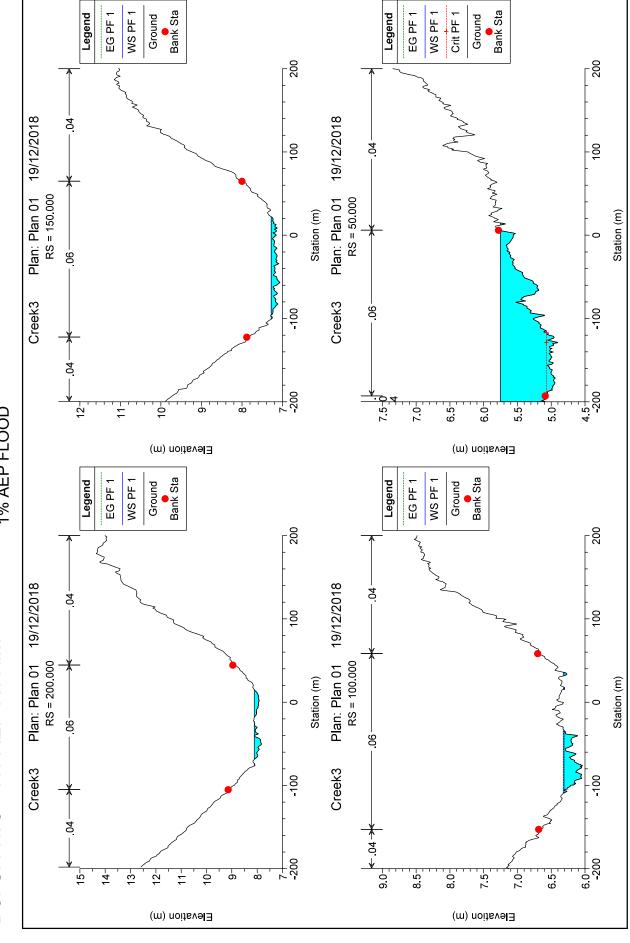


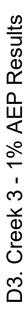


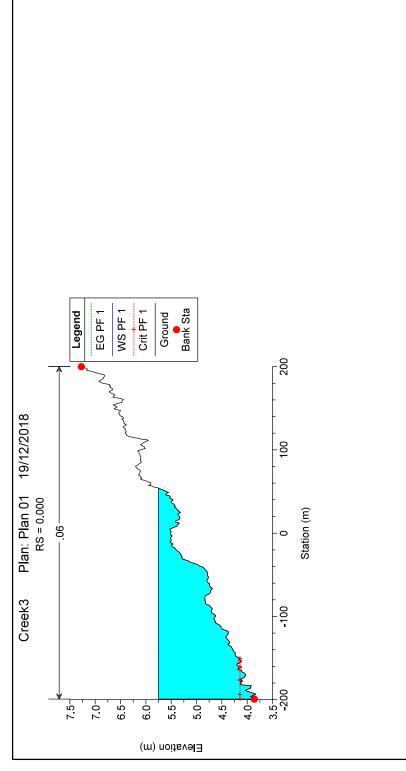


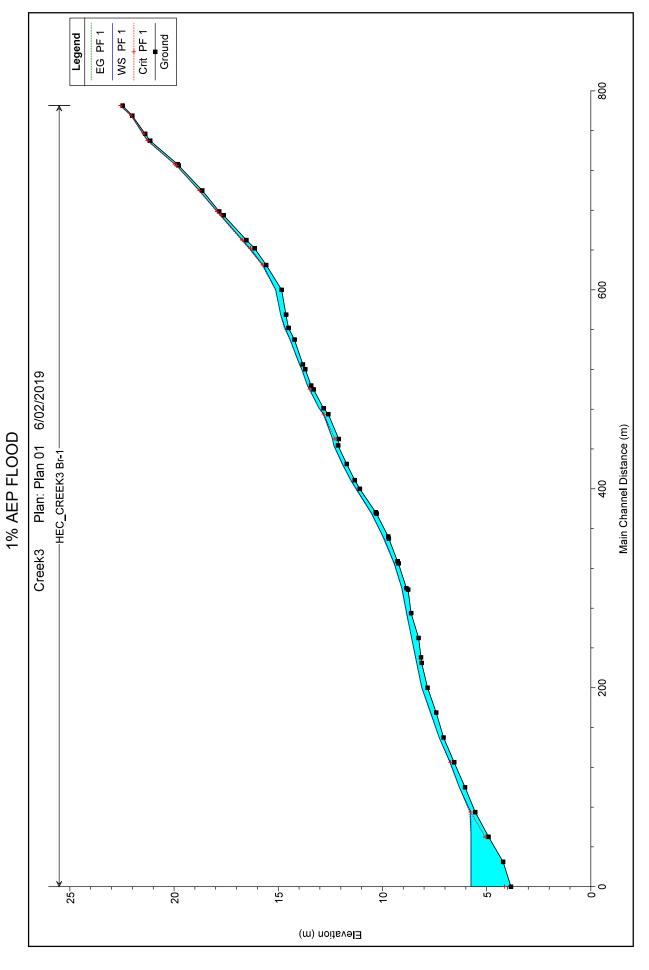


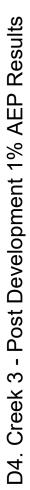


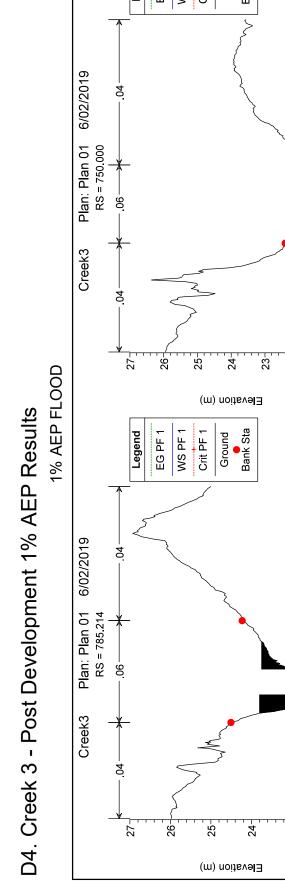


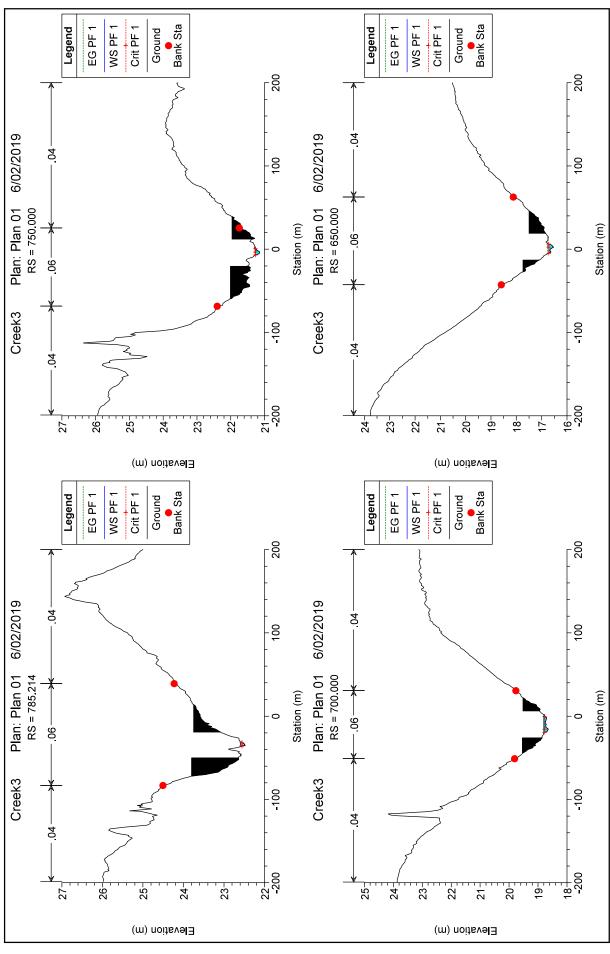


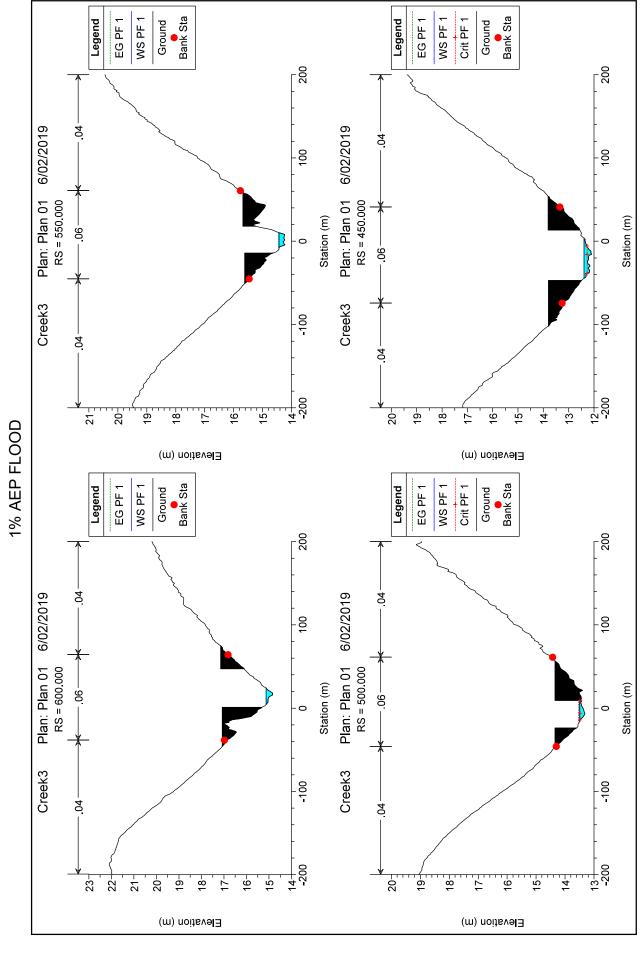


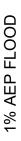


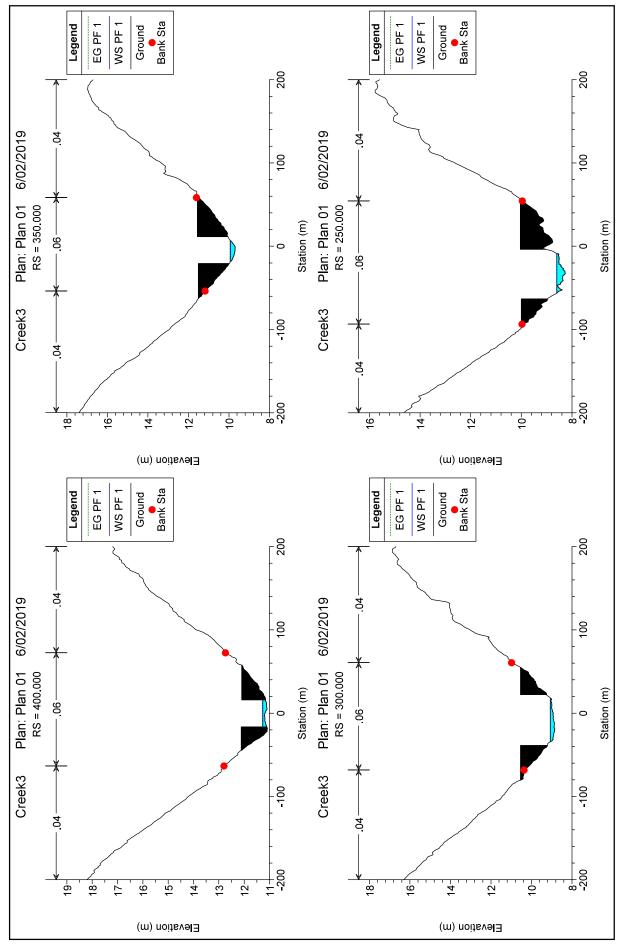




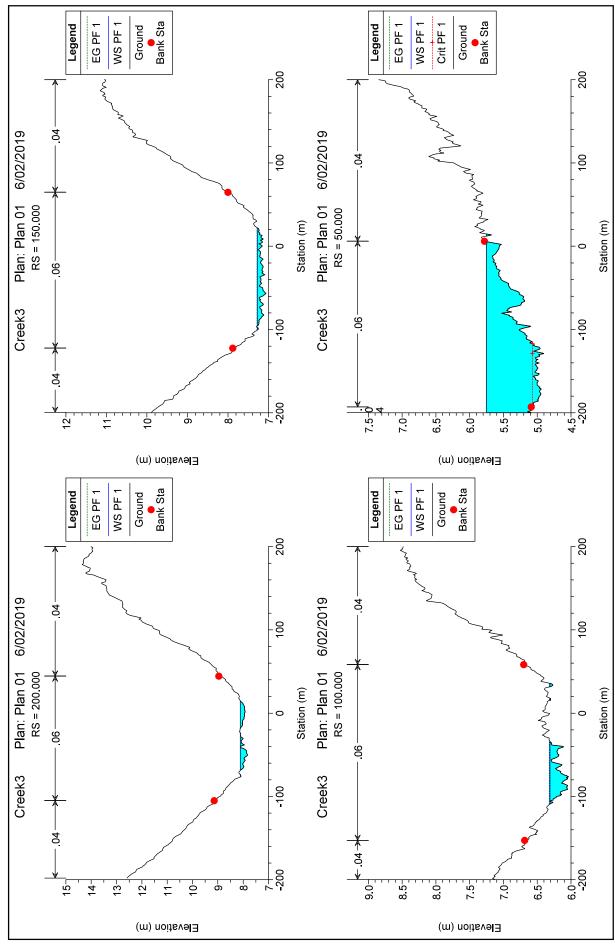


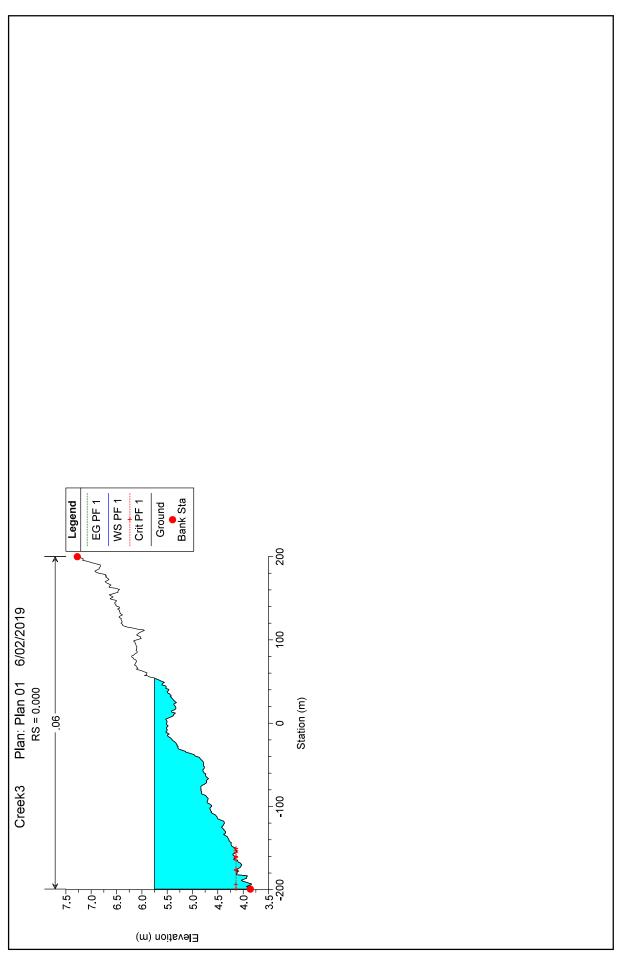












1% AEP FLOOD

